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Coordinate transformation

One of the characteristic properties of eocf:s is best

demonstrated by a comparison with regression in a very
simple linear case. Let x and Yi be pairs of observed
variables where mean values have been substracted out.
Plotting the data in a xy-diagram we may obtain some-

thing like fig. 1.
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Fig. 1

Depending on the purpose for which we wish to use the
data we treat them in two essentially different ways.
If we wish to establish a statistical relationship by
which v may be calculated if x is known we use a res

gression method, Assuming a linear dependance
y = kx + ¥
we utilize a part of the sample in order to determine

k so that the variance of the residual r becomes a mini-
mum, see fig 2a.
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The regression coefficient k is found to be

(l) k = tga =

ol

where the horizontal bar as usual represents an ave-
raging over all the data utilized and where o is the

angle between the x-axis and the regression line.

On the other hand if we wish to analyze variations
of x and y in order to relate these to external fac-
tors or, if.we wish to compress as much as possible
of the information into one single variable, we use
an eof analysis. In the linear, two-dimensional case

we introduce a new coordinate system, see fig 2b
(2) 7z =xcos B +y sin B n =‘Y‘cos B - x sin B
where B is the angle of rotation and where we now

minimize the variance of n, using the data in the

sample
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In this case we find

_ 2xy

so that the angles o and 8 are different.



the minimization of the variance in n is equivalent

to an optimization of the variance of . We have thus
transferred as much as possible of the information to
the g-direction. In a multi-dimensional case the in-
formation in certain directions will be very small and
in many applications negligible. The necessary number
0of degrees of freedom in calculations may then be con-

siderably reduced. Furthermore it is easily shown

from (2) and (3) that in the sample
n = 0

or in other words that the information in z is un-
correlated to the information inn. The implication

is that if the variations in x and y are due to exter-
nal factors with linear responses, then the factors
causing variations along ¢ are uncorrelated to the
factors causing variations along n. The transformation
intq eof therefore provides a mean to differentiate

between several external influences.

The linear transformation (2) may easily be generalized
to the multidimensional case. Let fn(t) be a given set

of N observed functions in the interval (0O,T). Forming
(4)  Ic, f (t) = r(t)

wevWish to determine the coefficients c, SO that the
variance of the residual r(t) over the interval (O,T)
has an‘extreme value (minimum), If the set is
1ineariy dependént the residual will be zero for

all. t but this will not influence the calculation.
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In order to exclude the trivial solution, cn =0

for all n, we have to add the constraint
(5) Zc; = constant % 0

and using a Lagrange multiplier, A, we arrive at the

extreme value problem

3 T N N

L - 2 _ 21 -

== {f[z_ c £ (t)]*dt AT o’} =0
kK o n=1 n=1

which leads to the following set of equations.

The covariance matrix fnfk is symmetric and we thus
have N eigenvalues Ai and corresponding to these also

N eigenvectors Cin with the orthogonality condition

2
in

S ™MZ

N
cinc'n = Gi. z c
=1 J J n=1

where (5) is the normalizing condition.

When solving the matrix equations (6) one usually
orders the eigenvectors Cin according to decreasing
eigenvalue which corresponds to decreasing value of
the variance of the residual r(t) in (4). A vanishing
eigenvalue therefore indicates that the set fn(t) is
linearly dependent and thus has less than N degrees of
freedom. A very small eigenvalue indicates similarly

a degree of freedom that is almost non-existent in the

functions fn(t) and therefore may be neglected.

In the above derivation (and also in the following) we
have for convenience assumed the observed functions
fn(t) to be continuous. Nothing is, however, changed
if the functions are known only at discrete points, it

only means that integrals are replaced by summations.
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Series expansion

A different approach to eof can be made using varia-
tional calculus. We then consider the following series
expansion of the given functions fn(t) discussed in
the previous paragraph

N

(7 £ (v) = a, (t)g,

z i in
i=1

where ui(t) and g;, are so far undetermined functions
and coefficients. We now require the series to con-
verdge as rapidly as possible taking all N functions
fn(t) into consideration. This means that each term
should take up as much as possible of the total va-
riance in all fn(t) and denoting by oc(t)gn a general

term (dropping index i) we have the variational problem

O~
S~z

[f (t) - a(t)g_]?dt = minimum
_{n n

Varying here o (t) and g, we have

O —H
o B ng b

. [£,(8) - a(t)g ] [a(t)sg, + g da(t)]dt = 0

and since Sa(t) and ng are independent and arbitrary

we obtain the following two equations

(8) [f (t)a(t)dt = g  [fa’(t)dt

N N
(9) = £ (g, =a(t)l g = alt)
n=1 n=1

where in (9) we have applied the normalizing condition

N ,
2 _
(10) X g, =1
n=1

Elimination of a(t) between (8} and (9) now gives the

following matrix equation

N
F £ 2

(11) Z_ gnfn k = 9o = kgk
n=1

which is identical to equation (6) in the previous

paragraph.
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The coefficients 9, and c, are thus the same if we
apply the same normalizing conditions (5) and (10).

Furthermore if we compare (9) and (4) we see that
alt) = r(t)

and that the eigenvalue corresponds to the variance
of the residual r(t) in (4).

Finally it should be noted that if in (8) and (9) we
eliminate In instead of a(t) we arrive at the following

integral equation of the Fredholm type
T
(12) Cf)oa(t')z f )V E (£)dt' = a(t) fa®(£)dt

where the kernel again is symmetric and the eigen-
functions thus are orthogonal. The integral equation
(12) also has the same eigenvalues as the matrix equa-
tion (11).

Since in both cases we have orthogonal eigenfunctions
or eigenvectors we find for the eof expansion the fol-

lowing two orthogonality conditions

N T T
95094 = 04 5 Jo (Bas(t)dt = §.. [ a?(t)dt
n=1 in7jn = A 3 i3 5 71
where i and j are indices for eigenvectors (-functions)

corresponding to different eigenvalues.

Generalizations

The series expansion approach to eof has in many appli-
cations the advantage that it is easier to decide be-
forehand on the kind of series that will give the re-
quired information. Another advantage is also that it
is rather easy to generalize to problems where the con-

ventional eof-expansion is of limited value.

As an example we consider a function f(x,y,z) given in
a certain domain by continuous or discrete point obser-

vations.
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To begin with there are three different possibilities

for expansion

(13) f(x,y,z) = Zan(X)An(y,Z) = ZBn(y)Bn(z,x)

Zyn(z)cn(x,y)

where, depending on the character of the data and

the purpose of the analysis one of these will be the
best choice. If the first one is chosen we may in turn
expand the functions An(y,z) into eof. We have here
again three independent variables, Yr 2 and n, where
due to a possible truncation in the’first series n may

be limited. The three possibilities are

A (v,2) = %p__(2)P_(y) = Ia_ (y)Q_(2) =
m m

ZrnmRm(Zl,Y)

m

where the last one is trivial and the other two will
lead to results similar to a corresponding treatment

of the other series in (13).

In any case one will arrive at summations over two
indices and this will generally complicate truncation,
as is for instance the case in spectral models using

spherical harmonics.

One way to overcome this difficulty is to consider an

expansion of the type
(14) f£(x,y,z) = La (x)b_(y)c, (2)

which no longer will lead to a conventional eof-expan-
sion. With the requirement that a general term
a(x)b(y)c(z) should take up as much as possible of the

total variance we have a variational problem of the

type

[[f[f(x,y,2) - a(x)b(y) c(z)]?dxdydz = minimum
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or, after varying a(x), b(y) and c(z) and separating

equations

JE(x,y,2)a(x)b(y)dxdy = c(z)
(15)f | [£(x,y,2z)b(y)c(z)dydz = ra(x)
fff(x,y,zfc(z)a(x)dzdx = Ab(y)

where we have taken

Ja?(x)dx = 1; [b2(y)dy = 1; Jc2(z)dz = A

Elimination of c(z) in (15) gives the system

| Q(x,x",y,y')a(x")b(y")b(y)dx'dydy"
x'yy' |

= da(x)
(16)
/ J Q(x,x",y,y")a(x)a(x")b(y")dxdx'dy' =
XX' yl
= Ab(y)
where

Q(x,x'y,y") = [ f(x,y,2)f(x",y',z)dz
2z

The system (16) may be solved by an iterative proce~
dure starting with an initial guess on a(x)] and b (y)
and, when the solution is stable, calculate c(z) from
the first equation in (15) and subtract the product
from the function f(x,y,z). It may also be possible
to arrive in an easier way to a solution by expanding
in a first step the function f(x,y,2) into eof where
x and y are separated from z, This has not yet been
tested, nor has any expansion in the case of four or

more independent variables been considered.
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As we shall see later in this lecture expansions of
this generalized type may be of importance in connec-

tion with certain types of regression problems.

Another generalization of the eof expansion is obtained
in the case we add some kind of constraint to the ex-
pansion. An example of this where a geostrophic con-
straint is applied to a simultaneous expansion of

wind and geopotential data will be given in a separate

lecture.

Non-linearity

So far we have only been dealing with linear trans-
formations or linear regression. The efficiency of
these methods is in many applications sufficient for
valuable results to be obtained but non-linearity

is common in meteorology and a few words will there-

fore have to be said about such cases.

A typical example where non-linearity is important
is the eof-expansion of a pressure or geopotential
field. If deviations ¢'(Xy,t)from a mean value are

considered we have
o' (x,y,t) = Zun(t)fn(x,y)

and since un(t) will take negative as well as positive
values it follows that low and high geopotential areas
will be expanded by the same horizontal structure func-
tions. Our general experience is, however, that the
horizontal scale of lows is smaller than that of highs
and in an optimized expansion we should therefore have
the structure functions fn(x,y) depending also on a

or, in other words, replaced by a function gn(x,y,a).
Assuming the influence of o on gn(x,y,u) to be small
we may take

Bgn

9, (x,y,0) = g (x,y,0) + alzz=) g

which will give second order products in the expansion.
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The variational approach will lead to a system of inte-

gral equations that will be very difficult to solve.

In general the introduction of non-linearity into eof-
expansion results in a considerable increase in the

difficulties of obtaining solutions and we lack suitable
methods for this purpose. An example will show this.
If in fig. 1 we instead had a distribution of the

kind shown in fig. 3

Fig. 3

the linear transformation would not be very efficient.
Instead we should introduce a new orthogonal coordi-

nate system

£ = 9(x,y); n = ¢(x,y)

where as before we minimize the variance of n but

where we have to add a constraint on the variance of

the curvature of £ since otherwise we shall obtain

a broken line joining all the points (xnyn). The curva-
ture is a complicated differential expression and carry-
ing out the variation we immediately get exceedingly

awkward non-linear differential equations to solve.

Almost the same difficulty is encountered if we try to
establish a regression equation y = f£(x) + r with the

constraint that the variance of the curvature, given a
certain weight, should be minimized at the same time as

the variance of the residual r.
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One may therefore have to satisfy oneself by an
approximate approach, where the variance of first:and
second order derivatives are minimized. Let y = g(X)
be a curve consisting of linear segments joining all

observed points. We may then require

d?f

dx2)Z}dx = min

b ag
(17) J{[E(x) - g(x)]? + ui(ggx)? + ual
A ,

where (a,b) is the interval for x and p: and u: are

weighting factors. Variation of f gives

a‘s _ | &
' ax?

+ £f =g

with the natural boundary conditions

at a*t _ , 4f
Hi1 dx H3 dx3 dX2

= (0 for x = a,b

if we do not prescribe f and df/dx respectively at

the boundaries.

The solution is then easily obtained and may be shown
to result in damping at an increased rate of higher
wave numbers, the rate of damping depending on the

choice of uy; and u».

A similar approximate approach may be used for the
coordinate transformation leading to a "non-linear"
eof expansion.

In the case of non-linear regression it is

worth while to mention a method that in certain cases
may give interesting results. Let a(t) be the pre-
dictand and b; (t) and b, (t) suitable predictors.

The regression equation is then of the form

a(t) = f{b,(t), ba(t)] + «

where f is an undetermined function
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which we may expand into eof, taking
flbi(t), ba(t)] = Zun(bl)hn(bz)

The calculation of an(bl) and hn(bz) will depend
on the kernel

Ja(bi,b2)a(bi,b,)db,

which will necessitate a mapping of a at gridpoints

of b, and b, in phase space. The analysis required for
this purpose may be based on an equation similar to
(17) but with x-derivatives replaced by two-dimen-

sional nabla-operators.

The method may also be extended to three or more pre-
dictors if the expansion indicated in the preceeding

paragraph is used.





