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Abstract

The problem of wave solutions in an isothermal, nonhydrostatic
atmosphere at rest is considered. A linear perturbation
analysis 1is performed. The solutions obtained under the
assumption that the Coriolis parameter is constant consist

of sound waves and gravity-inertial waves.

It is investigated‘how the hydrostatic assumption and an
assumption of incompressibility influence the phase speed
with the result that these assumptions are unjustified on

a sufficiently small scale although both aSsumptions filter

the sound waves.

The initial value problem of finding the partitioning of

the initial amplitudes of the various parameters on the
existing wave components is solved for the cases of a
vanishing or a constant Coriolis parameter. It is possible

to determine the initial conditions which will prevent any
sound waves in a linear solution. The procedure is equivalent
to the normal mode initialisation but definite relationships,
depending on the eigenvalues, between the meteorological

parameters are established.



Intfoduction

The purpose of this note is to investigate_the‘impact of the
hydrostatic and various other assumptions on the phase speed
of harmonic waves. The model adopted for the study has a
basic state characterised by isothermal conditions and no
motion. The linearised equations include the effects of the
pressure force, the Coriolis force and gravity. In treating
the Coriolis force it has been assumed that the Coriolis
parameter is constant (f - plane). The investigation is
similar to one carried out by Herbert (1971) except that
rotational effects have been included in this study in such
a way that the validity of the results can be extended to

larger scales.

The possible wave types in the general case are sound waves
and gravity-inertia waves. The general freguency equation
is therefore of the fourth degree. It can be solved exactly
or by approximation, depending oh the scale of the perturbation.
Both methods are used. Since the general frequency equation
is solvable it is straightforward to measure the impact of

a given filter-approximation on the remaining waves. This
is done separately for the hydrostatic assumption and an
assumption of incompressibility. As expected, it turns out
that these filter approximations are valid on a sufficiently
large scale but failed to reproduce the true phase speed on

the small scale.

Perturbations in an isothermal atmosphere 1is a classical
problem which has been solved by Solberg (see Godske et al
1957). In this paper we shall concentrate on filter

approximations.



. The Model

We consider a state of rest under isothermal conditions with
a temperature T, For the basic state we have hydrostatic

equilibrium, i.e.
5, = - 8P | (2.1)
To simplify the perturbation equations we introduce the variable
_ P . .
s = = - (2.2
o | ( )
or
P=D+p =p(l+e); p=p+p =p(l+s) (2.3

With these notations, with ¥« = Cp/Cv and assuming that the

Coriolis parameter is constant we find the following perturbation

equations
Sl - Ry
g% = - RT g% - f u
g—‘g=-RTg—-§+g(e—s) (2.4)

We shall prescribe perturbations of the form exp ikx + ily - itt]|.
Inserting in (2.4) it is possible to obtain a single equation

in the amplitude W(z) for the vertical velocity. From each ’

time derivative we get a term containing T. For purposes of

easy identification we shall mark some of these values. It is

thus easy to identify the effect of neglecting a term.



We introduce, therefore, the notations t(u), t(v), T(W),
7(e) and t(s). As an example we may say that if we set
T(W)= O we have made the hydrostatic assumption. Similarly,
if t(u) = ©(v) = O we have made the geostrophic assumption
for the perturbations. With these notations we get from
(2.4) a differential equation for W(z), the amplitude of

the perturbation in the vertical velocity of the form

d?w dw _
azZ Bagg TEW=0 (2.5)
in which
_ g8 1(s) - 1(e) * k1(8)
B RT kT{(8) (2.6)
and
- 1 . E . T(e)
E CRT [T(W)T(S) + RT (1 (s) *

k21(v) +22t(u)) (kRIT(wW)t(s) + g’-<1—_1<.))} (2.7)
t(s) (fo® - t(u)Tt(Vv)) '

We note from (2.6) that in the case where T(s) andt(e) are
the same we find B = g / (RT) = Ho—l

height for the isothermal atmosphere. Similarly, under the

where HO is the scale

same conditions we see that the middle term in the bracket
of (2.7) will vanish. The quantities B and E are constants
under our conditions. It is thus straight forward to solve

(2.5) under the boundary conditions that W = o at 2 = o and

1l

Z H. Let the solutions to the characteristic equations be

A+ i A where
1— 2

ol

(4E - B?) (2.8)

>
i
N =
o]
>
1]
N

giving



. Az ' »)\IZ
W=Dy e ! (coshzz+ i sindyz) + Dye (cosAizz—-i sink,z)

W=o0at z = o gives D+ D, = o and

Az ;
W=21iD;, e sin Ap2z (2.
whereafter W = o at z = H requires
Azg = mm L (2,
where m = o, 1, 2, ...... The frequency equation may

therefore be written in the form

We consider first the general case in which all the five
values of T are the same. The notations will be simpler

if we introduce

2 _ 2 _ — [0
% = KRT, CI = E—z——-_-*_'—lz , N 2mm T (2
and
X :% C = _T_ (2.
~1, » -

We find then

c.2 2
4 I 1 + N 2
T []'+ o7 4Ho‘<k‘+1‘>]X '

CZ 1 2 .

I 1+ N + k-1 1 _
—Z T2 10 2 =7 T 2 AR
C ¥ HH T(E™27) " H_Z(k*+ 27)

0

(2.9)

10)

11)

.12)

.13)

14)

(2.15)



(2.15) is the most general frequency equation within the
framework of this investigation. It will have four roots.
Two of these will be numerically large and of opposite sign.
They are the phase speeds of the sound waves in the model.
The other two roots will be numerically smaller, but also

of opposite sign. They are the phase speeds of the gravity-
inertia waves in the model. We shall later discuss the

numerical values of the solutions to the above equation.

The case of the hydrostatic assumption can be obtained from
(2.5) - (2.7) by setting (W) = 0 and t(u) = 1(v) = 7(e) = 1(8).
We find:

2 Cc.?
_ I K — 1 1
XH = Ez?-+ 4 =7 T N? (2.16)

The values of XH obtained from (2.16) should be compared

with the smaller roots obtained from (2.15).

For purposes of comparison it is also of interest to calculate
the speed of pure sound waves in the model. This speed may
be obtained by disregarding all reference to gravitational
and rotational effects, i.e. £ = 0 and g = 0. Under these

conditions we find B= 0 and

E = —1_ (t2 - (k?> + 22) kRT) (2.17)

m 212
XS2 =1 + HZ(EZ + %7) (2.18)

(2.18) shows that XS is always larger than unity except when

m = 0. For small scale motion, i.e. when (k® + &%) is large,
we find Xg 1. '

We return now to (2.15). Since the equation is of 4th degree

it is a little difficult to analyse the magnitude of the roots.



However, approximations to the roots can be obtained
separately for perturbations on the very small or the very
large scales. Considering first sufficiently small scales

we note that

c.2
I + 1+ N* << 1
Cc 2 4H “(k? + %) -
L (@]

(2.19)

because k* + 22 will be large. Under these conditions we
may write (2.15) in the form
k-1 1

X% - X2 + T TR Ty - 0 (2.20)
O

From (2.19) it is seen that the inequality holds when the
scale is small compared with 60km. This value is obtained
for H = 7321m, H = 25000m, m=1 CL2 = 0.1 x 10°m?s™2,
f=10""% s ! and k = ¢ = 2T;"'. Under the same conditions

H

it is seen that the first term in (2.19) is negligible
compared to the second, saying that rotation is unimportant
on this scale. The solution to (2.20) may be written in
the form |

(.
_ k-1 1

K'Z Hoz(kz + ,Q,Z)

\

. \ (2.21)

K-1 1
K% HO‘(k‘ + %)

where we have used the first terms in the series expansion
of the square root. The upper value is an approximation to
the speed of the fast moving waves while the lower value
applies to the slow moving gravity waves. We note that to
this degree of approximation we find that the fast moving

waves have a speed less than unity.



Considering next the large scale where

CI2 1 + N? .
z + 7 z — >> 1 . (2.22)

Ty, ZH_7(K* + L)

we find that (2.15) reduces to
C 2
X4 - I 1 + N2 2
( CLZ. + 4Hoz(kz + 24) ) X +
c. ? 1 + N? k-1 1

I .
( Z Z PA Z
CL?7 FH_(k” * 1)

. ) =0 (2.23)
K2 Hoz(kz + 22)

Using the same approximations as before it turns out that

the roots to (2.23) can be written in the form

( 1 + N? R S
4HO‘(k‘ + %) kK 1 + N°
Xz__J 2.24
A - CI2 + 4 k-1 1 ' (2.24)
CL KZ 1+N4

b

The upper value in (2.24) is analogous to the result obtained
by Herbert (1971). The same holds for the formulas given

in (2.21). This agreement is to be expected because the
results in (2.21) apply to very short waves where the Coriolis
effect is unimportant and because the upper formula in (2.24)
applies to sound waves. Since (2.24) applies to the large
scale motion only, i.e. motions with a scale large compared
to 60km, we may also state that the second term in the upper
formula in (2.24) can be neglected because its value with

the adopted parameters is about 0.2 while the first term
exceeds this value for quite'small values of the scale.
Introducing this further approximation we may state that the

speed of sound waves on the large scale in the model is given



by
x = VY1 + N2 1

The values in (2.25) show good agreement on the large scale
with the results obtained from (2.15) as can be seen from
Table 1, which contain three different values of the speed

of the sound waves. Table 1 shows in particular that XS

computed from (2.18) is an underestimate of the exact wave
speed on the large scale. XA from (2.25) is a good
approximation to XE down to scale of about 100 km.

We shall next compare the various estimates of the slowly
moving gravity-inertial waves on the large scale. The

speed of these waves has been computed from (2.15) (XE),

from the second expression in (2.24) (XA) identical to (2.16)
where the hydrostatic assumption was made in the equations.
The comparisons can be made from Table 2 where we have
included the values obtained if the Coriolis parameter is
neglected (XHE).

The value of the second term in (2.24) is,as mentioned,

about 0.2. The first term in (2.24) can be neglected compared
with the second if the scale is small, but still large enough
that (2.24) is valid. Both terms have, however, been included
in calculating XA‘

Table 2 shows that XA is a good approximation to XE down to

a scale of almost 100 km (1=0.1). The same is true for the
values obtained when the hydrostatic assumption is made from
the outset because (2.16) is identical to the second expression
in (2.24). 1If rotation is disregarded in the model as was

done by Herbert (1971), we find that XHE is close to XE for
scales around 100 km, but the deviations are large for larger
scales. The level of a 10% difference between XE and XHE

is reached at a scale of about 6000 km (1=6).



For the very short waves for which (2.21) applies we find
that the approximation is less accurate. This is first of
'all demonstrated by Table 3 giving the exact and approximate
‘values of the speed of the sound waves. We note first of all
that the approximate values obtained from (2.21) are all less
than unity while the exact values are larger than unity. The
approximation is accurate only on the very small scales,

i.e. less than about 30km when the error is 10%.

Table 4 applies to the gravity waves. As with the sound waves
it is seen that XA is a good approximation to XE only on very
small scales. The speéds based on the hydrostatic assumption

are also a poor approximation to XE on this scale.

All the tables have been prepared with k = &. To supplement
the tables we have prepared figures showing the percentage
difference between the exact speed and the speed based on

the hydrostatic assumption, i.e.

Q = x 100 (2.26)

Figure 1 shows Q as a function of LX for Ly = 0.01 and m = 1.
For 1arge\va1ues of L, We find that Q is about 350%. Figure 2
shows Q as a function of LX for Ly = 0.1 and Ly = 1.0 with
m=1. 1In these cases we find that Q approaches 8% for large
LX when Ly = 0.1 while Q for practical purposes vanishes for
large Lx when Ly = 1.0. From these figures we may conclude
that the hydrostatic assumption should not be applied when

either LX or Ly are small, say less than 100 km.
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Incompressible Flow

It is well known that the incompressibility assumption

will filter the sound waves. We shall make this assumption
and investigate the speed of the remaining slow waves in
comparison with the exact solution for the gravity-inertial

waves. The basic system of equations are:

sl - RTZE 4+ gy

%% = - RT %% _ fu

g% = _ RT %g g (-9 (3.1)
TN VS TN

in which the notations are the same as in (2.4). Employing
perturbations of the same type as in section 2 we may derive

an equation equivalent to (2.5). We get:

o r W osgw=0 (3.2)
where
_g _1 _ (E%T(v) + 2%1(w))(kRTt(w)T(p) - kg*)
F=g7~m + &° (£,* - t(uw)t(v)) «RTt(p) (3.3)

In analogy with (2.12) the general frequency equation is

272
G = @ﬁg_ + % F2 (3.4)
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We consider first the general case in which T(w)=1(v)=1(p)=T(W).
Using the notations defined in (2.13) and (2.14) we find,

after some rearrangements:

C 2
1 I 4 1 :
Xt = (gz*x1T+w) (3.5)

; 4H? (k% + 22)
1 +

1 + N?

It is clearly seen from (3.5) that the sound waves have
been filtered out by the assumption of incompressibility.
If we furthermore make the hydrostatic assumption which
can be done by setting t(W)=0 and t(u)=t(Vv)=T1(p) we find
from (3.4) that

C 2
2 _ 1 4 1 R
Xy~ = A I N (3.6)

Comparing (3.5) and (3.6) it is seen that the hydrostatic
assumption in an incompressible atmosphere is permissible
if the quantity o

_ 4H02(k2 + 22)

e (3.7)
1 + N? - ‘

- is close to zero, or if (1 + r)_1 is close to unity. Figure
3 shows (1 + r)—l as a function of scale for k = &. It is
seen that (1 + I')—1 is larger than 0.9 when the scale is
larger than about 200km. Practically no difference will
exist‘between the values of X computed from (3.5) and (3.6)

"if the scale is larger than 1000km.

A comparison of (2.16) and (3.6) shows that the assumption
of incompressible flow introduces a systematic difference
between the speeds of the slowly moving waves under hydrostatic

conditions. From the two equations we find that

X2 - X2 = %Z'T‘éfﬁf - 0.46, m = 1 (3.8)

showing that the speed in the incompressible model is

systematically larger than in the compressible model.
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Initialisation for Non-Hydrostatic Motion

In this section we shall investigate the problem of
integrating the non-hydrostatic equations with the
assumption that it is desirable to eliminate the sound
waves from the integration. As seen in the previous
sections the largest differences between the phase speeds
in non-hydrostatic and hydrostatic models occur on the
smallest scales. At these scales we find furthermore
that the Coriolis effect is of minor importance. It is
therefore not unreasonable to start with a model where
rotation is disregarded. In the next section we shall
look at the effect of rotation. The problem without
rotation has been considered by Herbert (1971) but his
goal was to find a set of filtered equations which would
describe the motion of the gravity waves with good
accuracy and at the same time filter the sound waves from
the system. We shall consider the problem from the point
of view that we shall integrate the non-hydrostatic
equations but attempt to initialise the state of the model
in such a way that the sound waves are absent from the
initial state. This is possible in the linear problem
and if the linear equations were integrated the sound
waves would not appear. Due to non-linear interactions
the sound waves would be created in an integration of non-
linear equations because the initialisation procedure is

based on the linear equations.

Using the same notations as before and introducing
U = € - s we find,disregarding the Coriolis effect and the

meridional velocity,the following linear equations:



Ju _ 0E
5t - - BT g%
AW _ 3 €
5t - - BT 55 + e
(4.1)
9€ _ _ .(0u , oW 1
5t - " KGx taw) t OW
dU _ _ (¢ - du , 3w
5t (k = 1) Gx * 37)

Introducing perturbations of the form exp[ik(x - ct)]
and eliminating all variables but W = W(z) we find the
following equation

~A

2 2
AW _ 1 AW | gtk = 1) 4 peexe 1)} W=0 (4.2)

x =% C.2 = KRT | (4.3)

(4.2) is naturally equivalent to the equation derived by
Herbert (1971), and we may adopt his solutions with the
same boundary conditions, i.e. W =0 at z = 0 and Z = H.

We find

1
5
» _ 1 1 + N? 1 1+ N2, ,(k-1) 1 |
X" = 5(1 * 4kZH02) tg (1 4k2H02) -4 K?Z Ho Kk?
(4.4)

The two roots corresponding to the plus sign in (4.4) are
the sound wave phase speeds while the remaining solutions
corresponding to the minus sign are the internal gravity

waves. We shall denote the first roots by X: and -X,,
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.while the second set will be denoted X3 and -X3. For

short waves, i.e. for

+ N? '
T << 1 (4.5)
we find
2 . kK - 1 1
X1 =~ 1 - K‘ Hoék‘ ,
e -1 1 (4.6)
3 - K& Holkz

while the approximation for long waves, i.e. for

T > »1 BTN
is
L g T
4k“H, K 1 +N
\ (4.8)
Xa? =4 St

Returning to the basic equations we note that the
solution for W can be written in the form
Z

EHO

b . omm
W=12xW e sin (ﬁ—z) cos (k(x - cnt) ) (4.9)

where n denotes the four solutioné to the equations.
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The next goal is to express the variables u,

e and y
in terms of W.

From (4.1) using the form of the
perturbations and a process of elimination we find that

~  _RT 1 1 - aw
u——lqu_—z[ﬁ';Y—KdZ
L 0 (4.10)
~ .k -1 1 o 2 dﬁ
H = -1 ke CLL_CZ gW-2C dz

Using (4.9) it is then straightforward to calculate the

form of the three variables. After some calculations we
find that

u =n§1 i o Lo ggo S(z) sin (k(x - ¢_t) )
(4.11)
e =n§1 2o o L /g%O'S(z) sin (k(x - ¢_t) )
where
5(z) = (2 - k) sin (BF 2) - kN cos (B 2)  (4.12)

'For the last parameter yu we find
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Z
4 m 2 -

_ K — 1 2RT - Cn Wn 2Hy .. ,mm

M=%\ %6n C.Z - Cn? 21, °© sin (= Z)
n=1 L
(4.13)
Z N

K - 1 Cn Wn 2H, mi s

- = N T oot gﬁoe cos(E—Z) oln(k(x—cnt) )

(4.11) and (4.13) give the functional form in which the
parameter will occur in the solution. By setting t = 0
we can also see the way in which the initial conditions
have to be given. It is important to note at this point
that the co-efficient in the last term in (4.13) can be
obtained from the co-efficient in €& by multiplication
by the factor -(k - 1)N. It follows, therefore, that the
initial conditions must be given in the form:

Z

w =W, e 2Ho sinf(%EZ) cos (kx)

€ = Ey S(z) sin (kx)

(4.14)
Uy S(z) sin (kx)

ot
il

2Hg

U= e Mg SiQ(%EZ)—(K - 1)N Eq COS(%EZ) sin (kx)

We observe next that (4.9), (4.11) and (4.13) for t = 0
must agree with the expressions (4.14). It is thus seen
that we can obtain a set of four inhomogeneous linear
equations for the determinations of Wn,n = 1,2,3,4. To
write these equations in a convenient form we introduce

the notations -
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1 1
Fi(W) = 55k T = x;7 5 F2(w) = Fa(w)
_ 1 1
F3(u) - ZKHok i = XBL'; Fu(U) = Fg(U)
F — 1 X1 . —
I(E) - ZHokC 1 = XIA 3 FZ(E) - - FI(E)
L (4.15)
1
Fs(e) = grEe 1 2§ Fu(e) = - Fa(e)

FI(U) = EkHokCL 1 = Xlz Ei; FZ(U) = —FI(U)
_ k-1 2 - kx3%2 1 . N =
FS(“) = 2KHOkC 1 = Xaz ;3: FM(U) FS(U)

L

With the notations (4.15) we can write the four equations
in the form:
Wy+ Wo+ Wit Wy = Wo

Fi(u) W; + Fy(u) Wy + Fs(u) Ws + Fz(u) Wy = Uy
’ (4.16)
Fi(e) Wy, - Fa(e) Wy + Fa(e) W3 - Fz(e) Wy = Eg

Fi(p) Wy - Fi(u) Wo + Fa(u) Wiz = Fs(u) Wy = M

It is straightforward to solve the system (4.16) by
solving the first tWo equations for (W; + W) and

(W3 + Wy) and the last two equations for (W; - W2) and
(W3 - Wy):. The final result is with

Ay = 2(F3(u) - Fi(u) )
(4.17)

A, 2|F(e)F3(n) = Fi(u)Fs(e)
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= Fs(uw)Wo - Ty Fs(WEo - Fs(e)Mp

W, +

A4 Ao
W, = Fs(u)Wo - Ug _ Fs(WEy - Fs(e)M,

Al AZ

(4.18)

Wy = Do = Fi(WWo, _ FiG0E, - Fy(e)M

A | Ay
Wy = Up - Fa (W)W, , Fi(uw)E, - Fy(e)M

(4.18) is the general solution to the initial value
problem. For given initial condifions (Wo,Uq, Eg and
My) we may calculate the amplitudes Wn, n = 1,2,3,4 and
from those the corresponding -amplitudes of the four
components in Un, En and Mn. The rather cumbersome
calculations leading to (4.18) have been carried out
because it is possible to state exactly how the initial
conditions have to be specified to avoid any sound waves
in the linear model. (4.18) may furthermore be used

to investigate how large the amplitude of the sound
waves will be if we deviate from these exact conditions.
Since the indices 1 and 2 indicate the sound waves it is
obviously desirable to adjust the initial conditions in
such a way that W; =W, = 0. It is seen that these

conditions are satisfied if

Uy = Fa(u)Wo; Eo = g:gﬁ; M, (4.19)

Rewriting the first relation in (4.19) using the

expression for F3(u) we find that

Wo = 2ckHok(1 - X32)U, (4.20)
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For short waves we may write (4.20) in the form

1 1

757 U (4.21)

Wo = 2cHok(1 - £ =
using the expression for X3? from (4.6). For long waves

we apply (4.8) and obtain

, -1 1
Wo = 2kHk(1 - 4 *—== 15500 (4.22)

A comparison between (4.20) and (4.21) shows that (4.21)
gives good accuracy up to about 40km. Similarly, a
comparison between (4.22) and (4.20) shows that the long
wave formula is a good approximation about 50km.

From the second part of (4.19) we obtain

Ey = - Mo (4.23)

which for short waves is approximated by

_ ‘ 1
Bo = 2kHy°k? - (k - 1) Mo (4.24)
while the approximation for long waves is
E, = 2 ' Mo (4.25)
0 k(1 + N?) - 2(x - 1) :

The main result of the investigation so far is that
(4.19) or, equivalently, (4.20) and (4.23) give the
exact conditions which will guarantee that the amplitudes

of the sound waves vanish in the 1inear model.

We shall next investigate what would happen if we imposed
the hydrostatic assumption-on the initial data. As seen

from the second equation in (4.1) we would then have the
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relation

[~
m

u = Hy (4.26)

Q

Z

for the initial data leading to a relation between M,
and Eq. We may find this relation by inserting thé
solution (4.14) for t = 0 in (4.26). After some
calculations we find that the resulting relation is
identical to (4.25) which shows that the hydrostatic
assumption can be used as an initial constraint with

good accuracy on the large scale.

It is naturally well known that the hydrostatic assumption
implies Richardson's equation which is obtained by
requiring that 32W/3t?= 0 which in turn implies that the
equation obtained by time differentiation of (4.26) is
valid. Substituting in this equation from (4.1) we find
that

3 %W 1 9w _ 1 2u ) o u
522 ~ Hy 32~ X - D, 5x T ix G (4.27)
or
dzﬁ 1 d@ k-1 x ° dﬁ
7% " H, dz P (4.28)

Since (4.28) must be satisfied by the solutions given in
(4.14) it is seen that by substitution from (4.14) in

(4.28) we will obtain a relation between W, and Ug.

After some calculations it turns out that the resulting
relation from (4.28) is identical to (4.22) which was

the approximation to the exact calculation for long waves.
We arrive thus at the same conclusions as earlier that

the hydrostatic relation imposed on the initial state
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N \
will approximate the exact relations for vanishing sound

waves on the large scale. The hydrostatic relation will,
however, not eliminate the sound waves from the numerical

integration.

To illustrate the validity of the hydrostatic assumption
the ratios Ey/Ey,H and Wo/Wo,H have been computed as a
function of wavelength. The results are given in Figure 4
showing that these ratios are close to unity for long

waves but deviate considerably from unity for short waves.
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The Initial Value Problem

We shall return to the model treated in sections 2 and 3.

The major problem to be investigated will be the initial
conditions which must be imposed either to eliminate the

sound waves completely or to reduce the amplitudes of these
waves to such an extent that they are harmless. The technique
will be to fit the solutions obtained earlier to arbitrary
initial conditions and then to select these in such a way

that the sound waves are (almést) eliminated. It turns out

to be most convenient to replace the two equations of motion
with the ordinary vorticity and divergence equation. If

we, in addition, introduce the parameter pu=e - s we get the

equations
gt = - 1D
g—% = - RTy?e + £L
- -RT I+ q (5.1)
%% = - k(D + gg) + % W
o
%% = - (k = 1) (D + %g

These equations are equivalent to the system (2.4). They
lead to the frequency equation (2.5) and to the solution
(2.15). The form of the solution for the vertical velocity
may,in agreement with (2.10),be written in the form

Z

4
W=3 W e 2HO ging 9% 2) cos(kx + &y - Tt)  (5.2)
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With the solution (5.2) we may use (5.1) to derive the form
of the solution for the other parameters recalling that all
solutions are of the form: G(z)exp[i(kx + Ly - Tt)] when

G(z) has to be determined for each parameter and furthermore
that the parameters have to be real. After straightforward

eliminations we find that

4
e = I En VY (z) sin (kx + Ly - 1t)
n=1
4
D=1 Dn Y (z) cos (kx + 2y - Tt) (5.3)
n=1
4
z =X Z VY (z) sin (kx + 2y - Tt)
n=1 2
where
z
2H
¥ (z) = %H e  °| (2-x) sin (Fz) - «N cos (Ez) (5.4)
, o : . ; .
and where
1 f2 - 12
_ 1 o) n _
B = -7 T 7= KRT(k? + L%)-1_*2 L Fn(s) L
n 0 , n
_ RT(k? + 22) _
Dn = F_7 % «RI(EZ + £°) - ©,° W, = T, (W, (5.5)
, - o ___ RI(® +g?) W o= F (o)W
n T T Z + kRL(KZ + 22)- 1_°2 n n n
n o} n
For the last parameter p we find that it has the form
4 k-1 . mll i . mil +
u==z | Zn 51n(ﬁ—z) - (K—l)En T §1n(ﬁ~z)
n=1L"0"0 o}
(5.6)

N cos (%EZ)] e Tﬁo sin (kx + &y - Tt)
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It is thus seen that due to (5.6) we are not permitted to
prescribe U with an arbitrary co-efficient.

The initial conditions must naturally be prescribed in such

a way that their form is in agreement with the above solutions.

. We shall therefore write at t = o.

= . _.mill
w = WO e HO 81n(ﬁ—z)cos (kx + Ly)
£ = EO ¥Y-(z) sin (kx + Ry)
(5.7)
D = DO Y (z) cos (kx + 2y)
r = Z0 ¥ (z) sin (kx + 2y)

The expressions in (5.7) shall be equal to the corresponding

expressions in (5.2) and (5.3) setting t = 0.
results in four equations in the four unknowns Wn’ n=1,2,3,4.

To write these equations in a simple form we note that

Fi(e) = -Fy(e), Fa(e)‘= - Fy(e)
Fi(D) = F5(D), Fs(D) = Fy(D) (5.8)
F1(2) = -F2(z), Fs(g) = ~Fu(z)

because 11 = -T, and T3 = -Ty. In writing these results we

have used 11 and T, to denote the frequencies of the sound
waves while t3 and T4, are those for the gravity-inertial

waves. With these notations we have

This procedure

Wi + Wy + Wi + Wy = W,
-Fi1(e) Wy + Fi1(e) Wao - Fa(e) W3 + Fé(€) Wu = E
Fi(D) Wy + F;(D) W, + Fg(D)‘W3 +'F3(D) W& =
Fi(g) Wu - Fa(g) We + F3(g) Wa - =

Fa(rg) Wy
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The solution to (5.9) is:

W, = L [ Fs(We = Do Fs(2)Eo + Fs(e)Zo i

2] T S TFD T OF(OTFs(8) - T (e)Fa (D) |
W, = L [ Fs(D)Wo - Dy Fs(g)E, + F3(e)Z ]
272 F3(D)-F1 (D) F1(¢)F3(e) - F1(e)F3(C)

~ | _ (5.10)

w. = L | Do = Fi(D)Wo _ Fi(g)Ey + Fi1(€)Zy
3 2 Fs(D) - Fi1(D) Fl(C)Fa(E) - Fi1(e)F3(t)
W = L [ Do = Fy (D)W, Fy(L)By + Fy(€)%g
) F3(D) - F,(D) F1(2)Fs(e) - F1(e)Fs(2)

Recalling that Wi and W, are the amplitudes related to the
sound waves and that for meteorological calculations it is
most often wanted to reduce them to zero we note that this

is accomplished if

Dy = F3(D) W,
Fi(e) (5.11)

Bo = - 5,y %0

We notice that the first equation of (5.11) may be written
in the form:
c.?

Wo = k(1 + 557 ~ X32) Dy (5.12)
L }

X3 is determined from (2.15). From (2.21) we find for the
small scale that
C 2

I Kk - 1 1
Z
CL :

2 Hoi(ki T 22) ) Dy (5.13)

Wo = k(1 +

or, with good approximation,

-1 1
Wo = k(1 - £ T AR T ) Dy (5.14)
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On the other hand, for the large scale we have (2.24)

giving

k-1 4
Wo = k(1 - K = 155 Do (5.15)

We turn our attention to the second equation in (5.11).
Using the expression for F;(e) and F3(z) defined in (5.5)
we find that '

)—h

= Lo ‘ '
Lo = = i‘a‘z—:‘(‘;?on (5.16) -
T <
CL

For the small scale using (2.21) we find that

K

Zo = To 3

Ho?(k? + 2%2) E, (5.17)

while (2.24) for the large scale gives

K

1
Zo = 4 To K - 1

(1 + N?) E, (5.18)

The main result of the analysis is therefore that if the
relations (5.12) and (5.16) are imposed on the initial

fields we are assured that W; and W, will wvanish and no

sound waves will be present in the linear model. The
conditions (5.12) and (5.16) can, of course, be imposed
since we may imaginé that the calculation is carried out
in a spectral domain. Using (5.11) or equivalently (5.12)
and (5.16) we note that the latter two expressions in
(5.10) reduce to ‘ , ‘

Wo o 2% T Wi
We _ 11 17, (5.19)
Wy 2 2 Fi3(g) W,
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We shall next investigate the hydrostatic assumption as

an initial condition. It is then required that

8T 0
(5.20)
The first condition implies the relation‘
wo=Ho £ | (5.21)

as seen from the third equation in (5.1). We make use of

e from (5.3) and yu from (5.6) and obtain after some

calculations:

Zooy =7 fo o (1 + N?) Eo,p  (5.22)

(5.22) is the general expression from the hydrostatic
eQuation. A comparison between (5.22) and (5.5) shows
that the hydrostatic assumptiqn is a very good approx-
imation on the large scale but breaks down on the small
scale. This can be clearly seen from the ratio between
7, computed from the exact expressions in(5.5)for n = 3

and the hydrostatic expression (5.22). We get:

Zy — K - 1 1 . 1

Zo,H =4 K* 1 + N> X357 - CIZ (5.23)
s
CL

The fatio is given in Table 5 as a function of wavelength.
The second condition in (5.20) leads to Richardsons
equation. (5.21) is differentiated with respect to time

and we substitute from the system (5.1). For our model



-28-

we get then a Richardson equation as follows:

3 %W,
S B_WH - k-1 D_H B_DH (5.24)
3 7?2 H, - .

Q2
~
st
=)
Q
N

Using (5.2) and the second expression in (5.3) we find
that
K - 1 4

W01H=K(1_ : sz 1 +N‘L) DO:H

(5.25)

We may again judge the validity of (5.25) by comparing
with the exact relation ig (5.5) for n = 3 giving:
' C
I

- 2
Wo  _ o» (1+ Cr2 - X7y (1 4 N2
W;T; Ko {2 = K% + 2N?

(5.26)

This ratio is also given in Table 3.

Summarising the results we may say that the solutions
-in (5.10) are such that we can see immediately how we
can reduce the amplitudes of the sound waves to zero
leading to the relations (5.11). These relations are,
however, equivalent to the procedure of normal mode
initialisation because we could just as well have used
(5.10) to calculate from the initial data the amplitude
W, and W; and from those the amplitudes D;, D,, Ei:, Eo,
Z, and Z;. The next step is then to adjust the initial
data Wy, Dy, E, and Z, by subtracting the amplitudes

related to the sound waves resulting in an adjusted
set of initial data: Wy - W; - Wp,Dy - D; ~Dy,

Ey - E; - Ep and Zy - Z; - Z,. Using this data set as
initial data will result in Vanishing amplitudes of the
sound waves in an integration of the linear equations
(5.1).



-29-

We note also that if we impose the hydrostatic assumption
we find relations which agree with the initialisation
procedures for sufficiently large scales because (5.18)
is identical to (5.22) and (5.15) to (5.25). However,
the hydrostatic equation imposed on the initial data

is not sufficient to reduce the amplitudes of the sound
waves to zero.
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. Numerical Examples

Two examples will be presented in this section. 1In
each example we have computed the partitioning of the
initial amplitudes among the four components for each

of the parameters W, D, E and Z.

In the first example we have assumed that the initial

data is suc¢h that the relations (5.11) are satisfied,

i.e.
Dy = F3(D)Wy
(6.1)
- _ Fs(e)
Bo = - Fz(c) %0

The selected values of W, and Z, were 0.01.ms ! and
0.15.ms '. The first corresponds to a maximum vertical
velocity of 1 cm s ' while the second gives an order of
magnitude of 10 °s ! for the vorticity amplitude because
Z9*2Hy is the factor on the vorticity. The choice of
constant values of Wy, and Z, for all horizontal scales

is naturally unrealistic but we are interested only in
demonstrating the technique. The calculations verified
that the amplitudes of the sound wave components were
zero for all parameters, i.e. W, = W, = D; = D, = E, =

E, = 2, = Z, = 0. The equations (5.19) apply in this
case. It is easy to show that for this case we have

W3 /Wy = DQ/DQ? Wy/Wo = Dy /Dy and E3/Eg = Z3/Zy, E4/Eg=
Zy/Zo. It is thus sufficient to show the results for the
vertical velocity and the vorticity. They are given in
Table 6 which shows that very large vertical velocities
will exist in the remaining gravity-inertia waves on the
small scale, while the vorticity amplitude will be divided
almost equally between the two waves. The large vertical

velocities are due to the large value of the ratio H/L.
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'The initial field will therefore be divided in two
cells with frequencies T3 and -t3; and non dimensional
velocities X3 and -X3. The first of these will have
ascending and the other descending motion, but they
will have the same kind of vorticity and pressure

perturbations.

The next example is calculated from hydrostatic initial
conditions. This means that the following relations
hold for the initial state:

1 + N?

Do = ‘WO
(2_%_5_)2+ N2
(6.2)
.4 k-1 1
Bo =5, 7w T+ %
Wo = 0.01lms 'and Z, = 0.15 ms ! are used again. We

note from (6.2) that Dy, and E, are constants. With the

adopted parameters we find D, = 0.089 ms ! and E, = 390.9m;
the that these values have to be divided by 2Hy; to
indicate the perturbation amplitude. Table 7 for the
vertical velocity shows that the amplitude of the sound
waves is considerable -although W, and W, tend to be of
egual numerical value, but of opposite sign. This fact
is very important because it means that only minor
adjustments are needed in the initial data to eliminate

the sound waves. Theadjusted data for Wy is We-W.-Ws.

The percentage change is thus

- (Bt - 1004 (6.3)

This quantity has been included in Table 7 showing that
the change is 6% on small scales decreasing to 1.5% on
the large scale. Note also that W3 and W, for the large
scale are almost identical for the two data sets in

Tables 6 and 7. Tables similar to Table 7 have been
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computed for D, E and Z. They are not reproduced here
except for the percentage change of D given as the last

column in Table 7.
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Concluding Remarks

The present investigation can be considered as a
generalisation of Herbert's (1971) work because we have
included the Coriolis effect. It is shown that non-
hydrostatic effects are very important if a numerical
integration shall include atmospheric phenomena on a

very small scale.

Another major result is the determination of the initial
conditions necessary to guarantee that no sound waves

will occur in a linear integration of the non-hydrostatic
equations. These conditions deviate from the hydrostatic
initial conditions especially on the small scale,indicating,
therefore, that hydrostatic initial conditions will not

exclude sound waves from an integration.
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TABLE 1

Comparison between the approximate speed of sound waves,

XA’ computed from (2.26), the exact speed XE computed from
(2.15) and XS computed from (2.18). Parameters: HO = 7321m,
H = 25000m, Cr,2 = 0.1 x 10°m*s™ 2, £ = 10" 87! and

k =8 =20 '(m = 1),

L Xa Xg X3
0.1 1.61 1.86 1.73
0.2 3.22 3.35 3.00
0.3 4.83 4,91 4.36
0.4 6.44 6.50 5.74
0.5 8.05 8.10 7.14
0.6 9.66 9.70 8.54
0.7 11.27 ©11.30 9.95
0.8 12.88 12.91 11.36
0.9 14.48 14.51 12.77
1.0 16.09 16.12 14.18
2.0 32.19 32.20 28.30
3.0 48.28 48.30 42.44
4.0 64.38 64.39 56.58
5.0 80.47 80.48 70.72
6.0 96.56 96.58 84.86
7.0 112.66 112.67 99.00
8.0 128.75 128.77 113.14
9.0 144 .84 144.86 127.28

10.0 160.94 160.96 141.42
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- TABLE 2

Comparison between the approximate speed of gravity-
inertial waves, XA computed from (2.25) or (2.16), and
the exact speed XE computed from (2.15). XHE is the
speed obtained if fo = 0 in (2.15). Parameters as in

Table 1.

L 29 Xg xR
0,1 0.4314 0.3738 0.3738
0.2 0.4315 0.4152 0.4152
0.3 0.4315 0.4242 0.4240
0.4 0.4316 0.4275 0.4272
0.5 0.4318 0.4291 0.4288
0.6 0.4319 0.4301 0.4292
0.7 0.4321 0.4308 0.4301
0.8 0.4323 0.4313 0.4304
0.9 0.4326 0.4318 0.4306
1.0 0.4329 0.4322 0.4308
2.0 0.4372 0.4371 0.4313
3.0 0.4444 0.4443 0.4314
4.0 0.4542 0.4542 0.4314
5.0 0.4665 0.4665 0.4314
6.0 0.4811 0.4812 0.4314
7.0 0.4979 0.4979 0.4314
8.0 0.5165 0.5166 0.4314
9.0 0.5369 0.5369 0.4314

10.0 0.5587 0.5588 0.4314
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TABLE 3

Comparison of approximate speeds, obtained from (2.21),

and exact speeds, obtained from (2.15), for sound waves.

L Xy Xg
0.01 0.9976 1.0105
0.02 0.9903 1.0420
0.03 0.9781 1.0940
0.04 0.9606 1.1652
0.05 0.9378 1.2534

. 0.06 0.9090 1.3558
0.07 0.8739 1.4697
0.08 0.8314 1.5926
0.09 0.7806 1.7225
0.10 0.7196 1.8577

TABLE 4

Comparison of approximate speeds, obtained from (2.21),
exact speeds, from (2.15), and speeds based on the hydrostatic

assumption for gravity waves.

L Xp XE XH
0.01 0.0694 0.0687 0.4314
0.02 0.1389 0.1333 0.4314
0.03 0.2083 0.1904 0.4314
0.04 0.2778 0.2384 0.4315
0.05 0.3472 0.2770 0.4315
0.06 0.4167 0.3073 0.4315
0.07 0.4861 0.3308 0.4315
0.08 0.5556 0.3488 0.4315
0.09 0.6250 0.3629 0.4315
0.10 0.6944 0.3738 0.4315
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TABLE 5

The ratios of the true initial condition and the
hydrostatic initial condition as a function of wave-
length. '

L Zy Wo
(10°m) 7o, H Wo,H
0.01 20.12 1.24
0.02 5.67 1.19
0.03 3.01 1.15
0.04 2.10 1.12
0.05 1.69 1.09
0.06 1.47 1.07
0.07 1.34 1.06
0.08 1.26 1.05
0.09 1.20 1.04
0.1 1.16 1.03
0.2 1.04 1.01
0.3 1.02 1.00
0.4 1.01 1.00
0.5 1.01 1.00
0.6 1.00 1.00
0.7 1.00 1.00
0.8 1.00 1.00
0.9 1.00 1.00
1.0 1.00 1.00
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TABLE 6

-

Vertical velocities and vorticities as a function of

wavelength (see 6.1).

L Wi W, 7 s 7
0.01 19.93 ~-19.92 0.075 0.075
0.02 18.33 ~18.32 0.075 0.075
0.03 16.26 -16.25 0.075 0.075
0.04 14.19 ~14.18 0.075 0.075
0.05 12.36 ~12.35 0.075 0.075
0.06 10.84 -10.83 0.075 0.075
0.07 9.59 ~9.58 0.075 0.075
0.08 8.57 ~8.56 0.075 0.075
0.09 7.73 ~7.72 0.075 0.075
0.1 7.03 ~7.02 0.075 0.075
0.2 3.64 -3.63 0.075 0.075

0.3 2.44 -2.43 0.075 0.075
0.4 1.84 -1.83 0.075 0.075
0.5 1.47 ~1.46 0.075 0.075
0.6 1.23 ~1.22 0.075 0.075
0.7 1.06 ~1.05 0.075 0.075
0.8 0.93 ~0.92 0.075 0.075
0.9 0.82 ~0.81 0.075 0.075
1.0 0.74 -0.73 0.076 0.074
2.0 0.38 -0.37 0.076 0.074
3.0 0.26 -0.25 0.076 0.074
4.0 0.21 ~0.20 0.077 0.073
5.0 0.17 -0.16 0.077 0.073
6.0 0.15 - -0.14 0.077 0.073
7.0 0.14 ~0.13 0.078 0.072
8.0 0.13 ~0.12 0.078 0.072
9.0 0.12 ~0.11 0.078 0.072

10.0 0.12 ~0.11 0.078 0.072
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TABLE 7
Vertical velocities and percentage differencies for vertical

velocities and divergencies as a function of wavelength.
(See 6.2 and 6.3)

_ (W*-w ) (D*-D )
L Wi Wz W3 Wey /W % /D %
0.01 -1.5556 1.5555 16.519 -16.509 1 -20
0.02 -2.6534 2.6531 15.870 -15.860 3 -10
0.03 -3.0943 3.0938 14.756 -14.745 5 -10
0.04 -3.0131 3.0125 13.353 -13.343 6 -6
0.0 -2.6762 2.6756 11.913 -11.902 6 -4
0.06 -2.2787 2.2781 10.595 -10.584 6 -3
0.07 -1.9111 1.9105 9.'455 -9.445 6 -1.
0.08 -1.6002 1.5997 8.493 -85.482 5 -1.
0.09 -1.3464 1.3459 7.684  -7.674 5} -0.
0.1 -1.1415 1.1411 7.002 -6.992 4 -0.6
0.2 -0.33123 0.33100 3.637 -3.626 2. -0.09
0.3 -0.15150 0.15131 2.442 -2.432 1.9 -0.03
0.4 -0.08616 0.08599 1.838 -1.827 1.7 -0.02
0.5 -0.05549 0.05532 1.473 -1.463 1.7 -0.01
0.6 -0.03871 0.03855 1.230 -1.220 1.6 -0.01
0.7 -0.02855 0.02839 1.056 -1.046 1.6 -0.00
0.8 -0.02194 0.02178 0.9262 -0.9160 1.6 ~-0.00
0.9 -0.01740 0.01725 0.8249 -0.8147 1.5 -0.00
1.0 -0.01415 0.01400 0.7439 -0.7338 1.5 -0.00
2.0 -0.00374 0.00359 0.3819 -0.3718 1.5 -0.00
3.0 -0.00181 0.00166 0.2643 -0.2541 1.5 -0.00
4.0 -0.00113 0.00098 0.2075 -0.1974 1.5 -0.00
5.0 -0.00082 0.00067 0.1750 -0.1648 1.5 -0.00
6.0 -0.00065 0.00050 0.1543 —0.1442 1.5 -0.00
7.0 -0.00055 0.00040 0.1404 -0.1302 1.5 -0.00
8.0 -0.00048 0.00033 0.1305 -0.1203 1.5 -0.00
9.0 -0.00043 0.00028 0.1232 -0.1131 1.5 -0.00
10.0 -0.00040 0.00025 0.1177 -0.1076 1.5 -0.00
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Fig.1 The percentage difference between the exact and the hydrostatic
phase speeds as a function of the wavelength in the x-direction
when the wavelength in the y-direction is 10km and the vertical

wave number is 1.
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Fig.2 As Fig.1l., but the wavelength in the y-direction is 1000km.
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A curve showing the validity of the hydrostatic assumption in
an incompressible atmosphere. The calculation is based on the
ratio r given in (3.7), and the curve shows (1 + r)_1 as a

function of wavelength assuming that the wavelengths in the x

and y directions are equal.
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