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1. Introduction

The problem of medium range weather forecasting is rather
different from the problem of short range weather fore-
casting. The time scale for the more subtle effects of
energy sources and sinks in the atmosphere is longer than
the two to three days for which short range forecasts are
made. Hence in these forecasts fairly crude represent-
ations of the main energy sources and sinks in the
atmosphere are often adequate. For medium range fore-
casts the interactions of the inertial effects and the

energy sources and sinks are more important.

The main energy sources of the atmosphere are radiation

and latent heat release. The radiation field is profoundly
affected by the distribution and properties of clouds.
Clouds in turn owe their existence to the condensation
process in which large amounts of latent heat are

released to the atmosphere, often at large distances

from the places where the water wvapour was introduced to

the atmosphere.

For these reasons much effort will be devoted to the study
of the questions of cloud prediction, the modification of
the radiative heating field by clouds and the mutual effects
of this process and the motion field which produces the

clouds.

In this study we took the 9 jevel N48 GFDL model used in
ARPE, BENGTSSON, HOLLINGSWORTH and JANJIC (1976) (later
referred to as ABH&J), modified the treatment of clouds
in the model in a simple fashion and analysed the

consequences for a ten~day forecast.



The main findings are that

1)

2)

3)

4)

5)

omission of a parameterization of cumulus cloud leads
to an undérestimate of cloudiness in the tropics,

This leads to greater surface heating and long wave
radiative loss in the free atmosphere in these regions.
As a result a stronger vertical lapse rate was created
which caused more convective precipitation.

There is a cooling of the atmosphere in polar regions
of 2 K over the 10-day period. This is accompanied
by a rise in surface pressure of some 10 - 15 . mb
compared with the control run with GFDL physics. This
leads to errors in the zonally averaged geopotential
near the pole.

The parameterization gave good fields of medium-level
cloudiness when compared to observations in mid-

latitude. The parameterization produced very similar
cloud distributions for all three levels which is not

always true in the real atmosphere,

There were some slight gains in forecast skill during
the first seven days when the interactive scheme was
used, but after seven days appreciable differences
became obvious which in most cases gave worse skill
for the interactive scheme run,

The fact that the differences between the runs were
rather marginal is thought to be due to the fact that
the treatment of cloud and humidity in the radiation
calculation in both models is not free of climatological
specifications,

In Section 2 we describe the changes to the cloud represent-

ation and in Section 3 we describe in detail the comparisons

of

our forecast with a control experiment,



2. Cloud parameterization

The GFDL model we used has been described in an earlier

report (ABH&J, 1976). In this model, clouds are

specified by climatological averages at three levels of

the model. The quantities specified as functions of

latitude only are the height of the cloud, the fractional
cloud cover, the cloud reflectivity and the cloud
absorptivity. The reflectivities were 0.21, 0.48, 0.69

for high, medium and low clouds respectively while the
corresponding absorptivities were .005, .02, .035, for the
whole globe. The cloud amounts and cloud heights are specified
as functions of latitude only and are shown in figs. 3.1.4 and
2.1.1 respectively.

In our run we altered the specification of clouds by making the
occurrence depend on the relative humidity and the sign

of the vertical velocity, averaged over the previous

six hours. The cloud is assumed to have the same optical
properties and height as in the control run. Cloud can

only occur if the time averaged vertical velocity > lcm/sec.
The values of the constants used in the regressions on
humidity were taken from Hunt (personal communication).

The values used were as follows, r being the relative

humidity and ¢ the cloud amount

Low cloud c = 0 r < .5

= (r-.5)/.4 5 <r < .9

= 1 L9 £
Medium cloud ¢ = 0 r < .55

= (r-.55)/.45 .B5 = r
High cloud c =0 r < .55

.7 (r-.55)/.45 .55 2 T

i




Some preliminary experiments indicated that the radiative
field was insensitive to a choice of 1 cm/sec. or 0.5 cm/sec,

as the cut-off point on the vertical velocity.

This scheme was implemented in our run at day one, because

we needed a time history of vertical velocity.

3. Results

When comparing the forecast with a radiation interaction
scheme we shall refer to it in the figures as "RAD-run"
and the control run using climate cloud data we refer to
as "N48-run'., Only brief comparisons between the fore-
casts and the verifying analyses will be given because
that has been done already by ABH&J(1976) and only
differences in the forecasts will be noted. The
comparison was mainly made by means of programs already
used by ABH&J and therefore there is usually a restriction
in the area for verification to the troposphere north

of 20°N.

To show the quality of the cloud parameterization,

fig. 3.1.1 to fig. 3.1.3 gives the distribution of the
clouds for day 1. For comparison the operational NMC
analyses of clouds are shown in the lower map. On these
maps we also give frontal zones which were drawn by hand
using forecast surface pressure and 850 mb temperature
maps. They agree quite well with those in the routine
analysis of the German Weather Service. The cloud
distribution is smoothed by zonal Fourier series

with maximum wave number 20. This representation hardly

changes any of the features of the distribution.



The medium clouds in fig. 3.1.2 show the best agreement
between predicted and observed clouds. These clouds

are mostly connected with frontal activities. All cloudy
areas in our experiment have a corresponding cloudy area
in the analyses but the analyses show mostly higher
values of cloud amount as well as areas of cloud which
are not predicted. This is especially true for regions
south of 300N where there are some doubts if the analysis
is right. We do not expect such cloudiness over the

deserts of North Africa or Arabia as found in the analysis.

In our experiment all cloud layers show very similar
distributions with less cloudiness for the high clouds
(fig. 3.1.3) and more cloudiness for the low clouds
(fig. 3.1.1). This does not always agree with analyses
and therefore the comparison with analyses is not as
favourable for low and high clouds as it is for medium

clouds.

The differences in intensity with height can best be

seen in fig. 3.1.4 which shows zonal means of cloud cover
in per cent for the three layers. Results of our
parameterization on day 2 and for a 10-day mean can be
compared with the climatological values used by GFDL

and with analyses by NMC,

The main feature is the excessively low cloudiness at the
high level for the whole globe and at the low level for
tropical and subtropical regions. The parameterization of
the mid-level clouds seems to work quite well in our run.
This is probably due to the fact that these clouds are mainly
generated by vertical motion of the scales of cyclones,

which will be best represented by our scheme.
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The differences in tropical and subtropical regions

of low level clouds are probably connected with

the non-parameterization of cumulus clouds which would
probably give the main contribution. On the other hand

we do not know how reliable the climatological data are.
The analyses obviously give wrong values south of SOON.
High level clouds are underpredicted, while the GFDL
values seem to be too high compared with analyses.

In fig. 3.1.5 we can see the influence of these different
cloud distributions on the non-adiabatic heating. We

show the 10-day mean of the latitudinal variation of
different energy sources. As can be expected from fig. 3.1.4
the influence is greatest in tropical and subtropical
regions, where less cloud means stronger radiative

cooling aloft, stronger surface heating, and stronger
heating due to rainfall. At 7.5°N and 7.5°S we find some
sudden changes in radiative heating which are probably due
to sudden changes in cloud heights, which were taken

from GFDL in both runs. Taking a mean over the globe

for all 10 days the reduced cloudiness gives 0.04 K/day
more cooling by radiation, 0,05 K/day more heating by
condensation, and 0.01 K/day more heating by sensible

heat flux. All combined give an extra heating imbalance
of 0.02 K/day. This imbalance is reflected in the global
mean temperature which increases from 251.56 K at the
beginning to 251,81 K in the case of climatological cloud
distribution and to 252.01 K in the case with our cloud
parameterization. The difference of 0.2 K at day 10 agrees
well with the extra heating of 0.02 K/day.

3.2 Comparison of height fields between both forecasts

To give a survey how both forecast height fields differ,
fig. 3.2.1 shows the RMS differences and fig. 3.2.2 the

anomaly correlation coefficients for the height field of



the troposphere north of QOON. The definitions of RMS
differences, correlation coefficients etc. and the reasons
why we chose these spectral groups may be found in

ABH&J (1976). |

To give a guideline, the values of a persistence fore-
cast versus the N48-run and a climatological normal
deviation from climatology are included in the figures.
Both runs were identical for the first day which is
obvious in the scores. The first exceptional day is the
third day when we find for a while bigger differences
pbetween both forecasts in both verification scores and
for all spectral modes. The second exceptional day is the
7th day when discrepancies begin to grow rapidly. This
can be seen in both verification scores and all spectral
modes. These days will be looked at more carefully later.
Figures 3.2.3 and 3.2.4 show the latitudinal and vertical
variations of the BMS-differences. The higher values at
mid-latitudes and higher levels are probably due to

higher variances of the height fields in these regions.

It is worth mentioning that there is a‘growth of differences
from the pole for the zonal mean (up to 170m) which is so
strong that it can be seen also in the figure for the total
RMS-differences. To understand this problem we will first
consider the temperature field. Although overall, the
model atmosphere's mean temperature increases in both runs,
the temperature at the pole decreases, presumably as a
consequence of the reduced amount of cloud in the radiation
run. By day 6 the difference in northern latitudes is

~ 1K and by day 10 it is ~ 2K, A uniform difference of

1K through the depth of the atmosphere between the surface
and 200 mb would give an r.m.s. height difference of 22 m,
The extra cooling near the poles in the radiation run cannot
therefore explain the difference in the zonally averaged
geopotential. The remaining source of discrepancy is the

surface pressure. Fig, 3.2.5 shows the difference in the




zonal mean surface pressure at day 7,8,9,10 between the two runs,
In general the pressure in polar regions is higher in the
radiation run, up to 21 mb. This would give rise to an
r.m.s, difference in height of up to 170 m in the opposite
sense to that induced by the temperature change. It is
worth noting that the large day-to-day changes in the
pressure in polar regions are almost certainly due to
large scale gravity waves. Fig. 3.2.6 shows the mean
Northern Hemisphere surfaée pressure as a function of

time in both runs. Part of the data was lost between

days 6 and 7 for the N48 run. Both runs show an
oscillation of ~ .75 mb amplitude initially. At the
outset the phase of the oscillation is the same in both
runs. Towards the end of the forecaét period the
oscillations are in antiphase. These oscillations will
have largest amplitude near the pole, thus explaining

the marked day to day fluctuations in zonally averaged

surface pressure differences.

3.3 Synoptic comparison

In this section a comparison of each forecast with the
other and with the verifying NMC-analysis will be carried
out. The comparisons with the verifying NMC-analyses
will be restricted to those points where differences in
the forecasts occur. Figures 3.3.1 to 3.3.8 show maps
of the 500 mb height field. Each figure contains maps of
both forecasts, a map of their discrepancies and a map of
the verifying analysis. There are no maps shown before

day 3 because the differences are too small.

On day 3 (fig. 3.3.1) there are two centres of differences,
i.e. near Hudson Bay and over Eastern Europe, both regions
with strong gradients in the zonal direction. These
differences can hardly be seen by comparing the individual
maps on the right and are probably generated by small
differences in the phases of the troughs. In the following



days the differences decrease and the forecasts seem to

be almost identical until day 6. Then again near Hudson
Bay a north-south flow with strong gradients in the

height field gives bigger differences. But this time a
phase difference of about 10° can already be seen and in
this point the RAD-~run seems to agree better with the
verifying NMC-analysis. On the next day the whole trough
near Greenland ( and ridge at 0°E ) differs in phase which
gives some advantage for the RAD-run, but both forecasts
look much more similar to each other than to the NMC
analyses. From day 8 on differences are spread all over
the map and no decision can be made which of the forecasts
is better or worse. It should be mentioned, however,

that the trbugh over Europe has a wrong tilt in the RAD-run

and that the ridge at 0°E is much better in the RAD-run.

Synoptic maps of the 1000 mb~level show that the main
features of both runs are very similar and the differences
do not give indications about an advantage for either of
the runs. Therefore in fig. 3.3.9 only the 10th day

forecast is taken as an example.

To give a more comprehensible view of the developments of
troughs and ridges Hovm8ller's trough-ridge diagrams will
be shown in figures 3.3.10 to 3.3.12 for two different
horizontal scales. The trough and ridge-axes of the
verifying NMC-analyses (lower panel) are copied into the
upper panels for the forecasts to make comparison easier.
For the long waves (fig. 3.3.10) both forecasts show good
skill. The trough over North America (SOOOE) after day 6
is forecast a little better by the N48-run. For medium
scale waves (wave numbers 4 to 9, fig. 3.3.11) the agree-
ment between forecasts and observation is considerably
worse compared to the long waves. Both forecasts look
very similar but the RAD-run has a tendency for too strong

troughs and ridges near the end of the forecast period.
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In fig. 3.3.12 for the medium scale waves at 1000 mb a
tendency of forecasting too large amplitudes after day 8
can be found, especially in the RAD-run. This failure is

the same as at 500 mb.

In fig. 3.3.13 we find zonal means of temperature for day 6.
In the left panel we see four main segments from the mean

© _ 40°N strong
baroclinity (subtropical front). 400 - 65°N 1low

© - 82%

strong baroclinity (polar front) and 82° - 90°N almost

temperature of the NMC-analysis : 20
baroclinity (air masses of mid latitude), 65

isothermal (polar air masses). This structure was fore-
cast very poorly. Although the differences between both
forecasts are small, it might be important for future
considerations that the RAD-run produced lower temperatures
to the north and thereby a slightly stronger gradient.

The panel on the right shows the vertical structure of the
atmosphere at two latitudes. Here only the differences
between the forecasts and verifying NMC analyses are shown
to get a higher resolution. The figure shows that at 20°N
the RAD-run atmosphere- is warmer and somewhat less stable
than the N48-run atmosphere especially in the lower layers.

At 60°N both runs have similar temperature structures.

Summing up, we can say that the differences between both
forecasts, found in the previous Section on day 3, are of
no importance for the quality of either of the forecasts.
The discrepancies from day 7 onwards represent two different
effects : slightly better forecasts by the RAD-run on day 6
and 7 and a wrong development in the RAD-run after day 8

of too strong medium scale waves,
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3.4 Conventional skill SCores

To get an objective comparison between both forecasts and
the verifying analyses, the same skill scores will be used
as already described by ABH&J(1976). It has to be kept

in mind that the differences in the radiation scheme were
introduced on day 1 so that no differences will be found
before that.

As already found several times when comparing models, there
are no significantly different RMS-errors (fig. 3.4.1).
Only after day 8 are there some advantages of the N48-run.
Some superiority of the RAD-run prior to that day confirms

the results gained in Section 3.3.

Anomaly correlation coefficients, shown in fig. 3.4.2,

give similar conclusions.

it wcn e e Ko s ks Soauh ke bem o e @ .

For a first overview for kinetic energy, we see in fig.
3.5.1 an energy spectrum for the troposphere , which is

a mean from day 7% to day 10 and a mean between 40°N and
6OON. It is obvious that the forecasts considerably
underestimate the kinetic energy for wave numbers 1, 2 and
3, which is in accordance with other experiments. TFor
higher wave numbers, the agreement is good and follows

a -3 power law.

The variation with time is shown in fig. 3.5.2 for
different groups of wave numbers already familiar to us,
The main feature to be stressed is an unrealistic
increase of kinetic energy of medium scale waves from
day 8 onwards for the RAD-run. This agrees with our
finding when looking at trough-ridge diagrams.
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In fig. 3.5.3, which shows its latitudinal distribution,
we see that this increase during the end of the fore-

cast period in the RAD-run is not only too strong (by 22%)
but also concentrated at 45° rather than 40° latitude.

Fig. 3.5.4 gives the latitudinal and vertical distribution
of the shortest waves, averaged from day 4% to day 7.

The maximum values at 300 mb are forecast much too weak

and this seems to be in contrast to our earlier

statement, based on fig. 3.5.1, which said that there was
good agreement for higher wave numbers. But wave number 10
which probably gives the main contribution to the group of
shorter waves has also in fig. 3.5.1 a difference of a factor
4 between forecast and observation., Another point which
should be stressed are some rather high values of kinetic
energy in the shortest waves near the pole.

In fig. 3.5.2 we found good agreement in zonal kinetic
energy, but this does not remain when more details are taken
into account. Fig. 3.5.5 shows the latitudinal and vertical
distribution of mean zonal winds during the end of the
forecast pericd. The results of the RAD-forecast are worst.
The subtropical jet core is too weak and the polar jet can
hardly be seen in the forecasts. This agrees with the

results for the zonally averaged temperature, fig. 3.3.13.

The available potential energy (fig. 3.5.6) which represents
the temperature variance, again has too high values from

day 7 onwards for wave numbers 4 to 9. The zonal available
potential energy (second panel from the top) is mostly too
strong which is in accordance with results in Section 3.1,
where We found extra heating in the RAD-run in the tropics
and cooling in polar regions which will cause stronger

latitudinal temperature differences.
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Latitude pressure cross sections of available potential

energy for long scale waves (fig. 3.5.7) show some
unrealistically high values near the pole at lower levels
in both runs. These are especially strong for the RAD-run.
Similar unrealistic values could be found for medium

scale waves,

In fig. 3.5.6 we found excessively high values of zonal
available potential energy, especially from day 5 to

day 8, and after day 7 a strong increase of available
potential energy of wave number 4 to 9. In accordance
with this, we find, in fig. 3.5.8, a very strong transfer
from zonal to eddy available potential energy for

medium scale waves. For long waves we find a defect

of transfer after day 7 which is in accordance with a

decrease of long wave available potential energy.

4. Summary and conclusions

Although the parameterization of the clouds connected

with synoptic systems seems to be quite reasonable, the
consequence of non-parameterization of convective clouds
is a noticeable effect on the heating balance in the
tropics. This probably contributes to a marked additional
loss of forecast skill in mid-latitudes from day 7 on-
wards. But it is not clear if this is the only failure,
because we also find a growth of differences near the pole
which becomes obvious in the zonal means. This is
probably due to gravity wave activity. On the other hand,
the chosen parameterization of clouds and its radiative
interaction gives some minor improvements up to day 8,
that is in the period before the failure in the tropics
begins to influence mid-latitudes. The discrepancies in

the short waves and the zonal mean near the pole are not
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readily discernible on the synoptic charts and will be the

subject of further study.

In the original model both the humidity and cloud amount

were specified climatologically.

In this study we have

introduced a new degree of freedom by allowing the model's

humidity field to influence the radiation field through

the cloud amount.

calculation is still specified climatologically.

The humidity in the radiation

It may

be that we observed rather small differences between the

runs because our treatment of moisture in the radiation

calculation is incomplete in this regard. An

integration which takes both effects into account, together

with convective clouds in the tropics, could well produce

a larger effect.
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due to rain, snow, surface fluxes and radiation
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Fig, 3.5.5 Zonal mean of zonal wind averaged over days 7% to

10, The panels on the right show the meridional
integral,
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Fig., 3.5.8 Time evolution of the conversion rate from zonal
to eddy available potential energy for both runs
and for the observations, averaged over the
troposphere (200 - 1000 mb) for the region north of
20N,
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