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Abstract

Many predictability studies have provided global estimates of
the mean error growth rate arising from the inherent instability of
atmospheric flows. It is, however, of practical value and theoretical
interest to determine the predictability of local synoptic situations.
Monte Carlo experiments have been carried out with a spectral baro-
tropic model in which randomly imposed perturbations induce perturbation
tendency responses in the vorticity field. Maps of local root mean
square response show preferred areas of error sensitivity in regions
of maximum wind speed, as expected from error advection effects.
Sampling fluctuations in the experiments, however, obscure the corre-
lation of vorticity perturbation and response which might serve as

a more precise measure of local stability and predictability.
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Introduction

Studies of the predictability of the large-scale motions in the
atmosphere have been concerned primarily with global estimates of the
theoretically expected growth during predictions of the initial obser-
vation and analysis errors. This growth is recognized to be an inherent
property of the nonlinear dynamics of the atmosphere which would occur
even with a perfect prediction model. Model imperfections provide,
of course, an additional important source of error growth.

It is the purpose of this paper to examine the problem of local
predictab?lity, that is, the determination of the error growth for
different regions of a given synoptic state. This is one of the main
objectives of stochastic dynamic prediction methods in which the
evolution of an ensemble of forecasts is considered. There is no
need to elaborate on the practical value of being abie to attach a
level of confidence to a particular local forecast. There is also,
howe r, considerable theoretical interest in attempting to measure
the relative stability and predictability of local flow structures
such as occur, for example, in atmospheric blocking situations.

Stochastic dynamic methods have been used to examine error
growth over several days, but this paper will concentrate on the
initial growth that can be related to the existing synoptic state.
This problem is closely related to the problem of determining the
stability of small perturbations to a specified flow field. 1In
general the associated stability matrix is of a dimension too great
for feasible algebraic.analysis, and so Monte Carlo approximations

are developed.
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A spectral barotropic model is used for these experiments in order
to avoid the additional difficulties that arise from the influence of
unbalanced gravitational modes on initial tendencies. It is found that
the Monte Carlo method is not particularly effective in finding unstable
modes but does show that local error sensitivity is associated with
large wind speed. This result is not surprising and is consistent with
error results for 2-day forecasts made with a similar model and veri-

fied against the real atmosphere.
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Stability matrix

For an abstract model dynamical equation
x = q(x)

the'dynamical state éolumn vector X evolves in accordance with the
generally nonlinear dynamics given by the vector function 3(§)'~ As
a model, the dynamical system has a 1arge but finite number of degrees
of freedom, D, which is the dimensionality of the vectors X and q-

An infinitesimal perturbation 6§ in the state vector produces

a perturbation 6x in the tendency of x given by

¢ = P d6éx ,

~

where the matrix elements of P are the partial derivatives of the

components of q with respect to those of x, symbolically

~

| @
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We shall call g the stability matrix which, for the general nonlinear
dynamics of interest here, is a function of the basic unperturbed
state vector X.

In principle, all linear stability questions can be answered in
terms of algebraic analyses of the matrix g. For example, any eigen-
vector of g for which the corresponding eigenvalue has a positive real
part represents an unstable perturbation mode.

In practice there are difficulties with the analysis of g. »For
systems with the number of degrees of freedom D greater than of order

100, the necessary manipulations of DxD matrices become computationally
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cumbersome. The usual methods of functional analysis are not applicable
since g is not normal (i.e., does not commute with its adjoint). And,
finally, the analysis of f provides more global than local information.
The usual predictability problem is to determine the expected
growth of average error variance. If averages are taken over all the
degrees of freedom of the system and over an ensemble of perturbations,

then the average error variance is given by

E = e2 = (1/D) Tr <8x sx*> R

where an asterisk indicates the complex conjugate transpose. In this
case 65* is the row vector transpose of the real perturbation column
vector Gx; The trace symbol Tr indicates summation over the diagonal
elements of the covariance matrix <6§ 6§*>, so that 82 is the mean
square of the components of 65.

We shall assume that at time t = 0 errors are imposed with variance

uniform in the components of 8x thus that

* 2
<6x 6x > = g" 1 s
where I is the identity matrix.

Consider now the initial behavior of E = 82 starting from t = 0

in an expansion through terms quadratic in t.

E(t) = E(o) + t E(o) + % 2 ¥ .

The first time derivative E is given simply by
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(1/D) Tr [<8x x> + <8x Gi*>]

(1/D) Tr [P <6x 6x > + <8x 6x > P']

(1/D) Tr [P+ P ] E

The second time derivative, however, depends in part on an evaluation

of
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We introduce a new matrix

9P (x)
Qx) = 5z q(x)
9P (x) .
= 9% ~ = g
in terms of which we may write
X 2
Sx = (Q+P7) 8x

The second time derivative E is given then by

. & . ok o *
(1/D) Tr [<8x 8x > + 2 <6x 8x > + <6x 65 >]

=
1l

(1/D) Tr [(Q + g*) + @+ g*)z] E

and the initial behavior of E = €2 is given by

E(t) = [1+ t (1/D) Tr (P + g*) + %_tz (1/p) Tr{(Q +'g*) + (@4 g*)z}]éz .

We shall have occasion to refer later to a truncated version of this

expression

2

E(t) = [1+¢t @/D) Tr (B + f*) +t° (/D) Tr (P P*)] &
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Spectral barotropic model

The dynamical model used for the experiments described in this
paper is a spectral barotropic model of strictly nondivergent motion.
A spectral transform algorithm is used which is the appropriate sim-
plification of that used by Bourke (1972) for a shallow water primitive
equation model. Triangular trumncation O Sm<nSN-=18 provides
D = 170 essential degrees of freedom. The basic state vector x is
taken to be a representation of the 500 mb vorticity field for which
values are obtained by a linear balance relation applied to a spectral
representation of the 500 mb geopotential field as analyzed by the
U.S. National Meteorological Center. Only antisymmetric modes with
n-m odd are kept to describe the vorticity field in the northern
hemisphere. The model is thus similar to that used for earlier fore-
casting experiments (Leith, 1974), but no correction is introduced
for climatological mean tendency, nor are free surface effects included.

The dynamics equation, therefore, becomes simply
%%-+ I, £+E) = 0 ,

with the stream field y related to the vorticity field £ by the Poisson
equation Vzw = £. We use an alias-free evaluation of the Jacobian
J(y, £ + E) by the spectral transform method. The domain is the
northern hemisphere with a frictionless wall at the equator.

In terms of the abstract formulation of the dynamics we may

write then

é = q© .
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Statistical analysis

In this paper we completely avoid the explicit evaluation of E
which might be carried out by evaluation of é = S(E) once for é
unperturbed and D times Ffor g perturbed separately in each ome of
its D components. Instead, we wish to evaluate quantities of interest
by Monte Carlo estimation of their statistical properties.

The matrix E, for example, is related to the covariance of
Gé and 6§ since

<shog’> = pesgar> - cF
A Monte Carlo estimation of <6§ 6§*> with a finite sample of size M
involves M equations of dé and provides an estimate of g which is, of
course, contaminated by sampling fluctuations that decrease as M
increases.

Although the usual global analysis of error growth averages over
all degrees of freedom, we are in this case interested in the local
error growth. Thus, we use a configuration space representation of
matrices such as <6§ 6§*> and consider only.the diagonal elements
which we display as maps. The matrix elements are real and the diagonal
elements are unchanged by the adjoint operation. The global average
operation (1/D) Tr becomes in this case a spatial average over the

hemispherical domain.
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Experimental results

The basic vorticity and associated stream field used in this study
are mapped in Fig. 1. They are based on the NMC Northern Hemisphere -
analysis of geopotential height for 12Z, 6 December 1967.

For this basic state %0 a calculation is made of Eo = S(go) which
serves as a reference. An ensemble of M perturbed states is then
generated by addition of random Gaussian perturbations GEi to each
component Ei of g in its surface harmonic representation. The per—
turbations 661 are generated as indépendent random numbers from a
Gaussian distribution with a standard deviation which is about 1%
of typical vorticity components of the basic state.

In Fig. 2 there is shown a map of a typical vorticity perturf
bation field 6%. These random fields are uncorrelated on the spatial
scales resolved by the truncation that was imposed.

For each perturbation a nonlinear calculation is made to deter-

mine a response
6 = a(g, *+85) - aE) -

For the perturbation 6§ displayed in Fig. 2, the response 6% is mapped
in Fig. 3.

Thé maps shown in Figs. 2 and 3 are based on the transformation
of Sg and 6% to a latitude-longitude grid with 5° resolution.

The perturbation calculation is repeated for an ensemble of M
independent cases, and statistics are accumulated at gridpoints for

estimation of
<(68)%> = diag €2 I

~

<(8E)(88)> = diag ezg
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and

<(5é)2> = diag €2 P g*
where the operator diag selects the diagonal elements of the matrix
for spatial mapping. The first of these statistics serves as a test
of the adequacy of the sampling procedure since in the limit as M + «
it should approach a constant iﬁdependent of latitude and longitude.
Fig. 4 shows the relative maxima and minima in a map of the square
root of this first statistic, superimposed on a map of the basic
stream field, for a sample of M = 100 perturbations. These have
a distribution about a constant value which indicates the relative
sampling fluctuation expected for such a sample.

By contrast to this root mean square perturbation <(6£)2>l/2

shown in Fig. 4 the root mean square response <(<S;:)2>l/2

shown in
Fig. 5 differs'significantly from a constant value. This measure of
response which enters into the truncated quadratic error growth term
shows definite maxima which appear to be situated in regions of maximum
wind speed as shown by the superimposed stream field contours.

The covariance estimate of <(8£)(SE)> is not mapped directly,
but rather the sample correlation field estimating

<(8£) (8E)>

<5512 <(se)

2>l/2 i

which is shown in percent in Fig. 6. This field is quite irregular

and probably nowhere signficantly nonzero since for a sample of M = 100
and ¥ = 0, variations in estimates of r of order *10% would be expected
from sampling fluctuations: it appears then that the individual
diagonal e¢lements of g or of 1/2(2 + E*) are too small to be determined

in this way.
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The significant maxima of response shown in Fig. 5 suggest that
the advection of error is a relatively important source of error growth.
The same qualitative result can be inferred from error growth in real
48-hour forecasts with a similar model (Leith, 1974). An example is
shown in Fig. 7. The forecast shown in Fig. 7 required 48 evaluations
of the nonlinear term g(g), whefeas the results shown in Fig. 5 required

101 evaluations.
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Conclusions

From these experiments we may conclude that for the model used
here the Monte Carlo estimation procedure was marginally able to
identify error sensitive regions with an investment in computing
comparable to that of a 2-day forecast.

Error sensitivity is relafed to the operator BE* whose positive
real eigenvalues measure the squared magnitude of response of any kind.
The real eigenvalues of E + E* are more relevant to stability and sig-
nificant values of these were not identified by the Monte Carlo
pProcedure.

These results are compatible with the suggestion that the ratio
of the real and imaginary parts of the eigenvalues of g ig small., It
is worth noting that for a basic state at rest the eigenvalues of E
are purely imaginary.

Further studies are needed to test the ability of Monte Carlo
methods to estimate higher derivative covariances such as <6§-6§*>
accurately enough to determine the complete quadratic initial dependence

of error growth on time.
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1:

Map of 500 mb absolute vorticity (solid) and stream field
(dashed) for 12Z, 6 December 1967.

Typical vorticity perturbation field.

Vorticity tendency perturbation induced by the perturbation
shown in Fig. 2. |

Root mean square vorticity perturbation.

Root mean square vorticity tendency response.

Correlation (in percent) of perturbation and respomse.

Real 48-hour forecast error for forecast starting 00Z,

7 December 1967.
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Fig. 1: Map of 500 mb sbsclute vorticity (solid) and stream field

{dashed) for 12Z, 6 December 1967.
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Fig a‘ 2:

Typical vorticity perturbation field.
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Fig. 3: Vorticity tendency perturbation induced by the perturbation

shown in Fig. 2.
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Fig. 5:
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Fig. 7: Real 48-hour forecast error for forecast starting 00Z,

7 December 1967.
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