The design of efficient time integration
schemes for the primitive equations.

- André Robert

The step used in numerical integrations is frequently limited to unreason-
ably small values imposed by the requirement for stability. In some cases, the
condition for stability can be relaxed through slight changes ih the integration
procedure. The semi-implicit technique and the Lagrangian method may be used for
this purpose. Schemes combining both techniques will be examined and analysed
for their stability properties. Results of an application to the shallow water
equations will be presented. ’

1. Introduction'

The explicit leapfrog time integration scheme is very inefficient when it
js used in large scale atmospheric models. For a grid length of 200 km, a time
step of the order of 5 minutes has to be used. It may even be necessary to redu-
ce that time step to 2 minutes if a staggered grid and fourth order differences
are used. Most explicit time integration schemes have to use rather short time
steps.

It seems possible to design schemes that are unconditionnally stable and
with such a scheme we might be able to obtain accurate results with a time step
of 2 hours. If this is true, and if the required additional. computations are not
too time consuming, we might end up with a very efficient model. The computer
time required to produce a forecast might be reduced by a factor of 10 or more.

In the following sections, we will propose an algorithm that combines the
semi-implicit scheme, a semi-Lagrangian scheme and the leapfrog scheme. 'The sta-
bility of the proposed algorithm will be analysed for a linearized version of the
shallow water equations.

An integration with the nonlinear shallow water equations will also be
performed in order to show that the algorithm gives reasonably accurate results.

2. The proposed algorithm

In the shallow water equations, it is proposed to apply a time average to
the Coriolis term, to the divergence and to the term involving the gradient of
the geopotential. These time averages, as well as the total time derivatives
will be evaluated by using points along the trajectories of the air parcels. The
corresponding linearized equations take the form: ‘
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where:

AL is the deviation from the basic flow U
A is the deviation from the basic flow V=0

¢ is the deviation from ¢,

AL, /U and 96 are assumed to be infinitesimally small
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where [ is either AL, AJ or ¢ . Both ¥ =2LL and U are assumed to
be constants.

In the absence of perturbations, if an underlying surface is introduced
and selected in such a way that it js everywhere parallel to the free upper
surface £ , then the term /U'aéo in eqn(3) will be eliminated and the term

] Pl
0
¢o in front of the divergence m:ért be replaced by the thickness of the fluid
which is a constant in this case. In other words, we will replace eqn(3) by:
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where ¢o is a constant.
In order to carry out the calculations, three points Pl , P,_ and P3 are
defined with the following coordinates
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Here we can see that P1 is the mid point of the interval from Pa to P-3
The displacements » and ,& will be calculated from the winds at E‘z .

a = st [ UR) + m(R)] (10)

A = att] \/(P—,_) + /U’(Pq_ﬂ (11)
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For infinitesimal perturbations, these displacements reduce to:

a = ol U | (12)
/g' = (13)

The time derivatives and time averages will be evaluated as follows
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In other words, we are taking a trajectory over a time interval of Q.Azﬁ
This trajectory terminates at a grid point. The end points of this trajectory
are used to compute the time derivatives and the time averages. Any explicit
term appearing in the equations would be evaluated at the mid point of the tra-

jectory. This means that the model uses centered differences of second order ac-
curacy.

3. Stability analysis

~ An attempt will be made to find exact solutions of egs(1),(2) and (6) in
terms of the exponential

E - e/i(wl‘+/£né+//%)

(16) "~
For this function we have
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and in a similar fashion we also have
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Substitution in the shallow water equations gives the fo]]owing results
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where
S = M(WﬁE%U)AZL (24)
C = coolw +/£U) e (25)

, We,have an homogeneous system of equations in terms of the variables AA,
J and . For this system to have non trivial solutions, its determinant must
vanish. This gives the frequency equation
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and from this equation we obtain the following frequencies

w = -'//3 v
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It is quite clear from this result that the solutions are unconditionally
stable.

4. Numerical integrations

The shallow water equations will be integrated on a 61 by 61 grid in a po-
lar stereographic projection with a grid length of 190.5 km at 600N. Fourth
order differences are used to compute all space derivatives and fourth order in-
terpolation is used to compute upstream values along the trajectories.

The numerical integration is performed from the 500mb analysed variables
at 12:00 GMT 30 August 1981. The geopotential is presented in FIG.1 followed by
a 48 hour prediction shown in FIG.2. This prediction was produced by the semi-
Lagrangian and semi-implicit model of the shallow water equations with a time
step of two hours. The result obtained with a time step of one hour is also
shown in FIG.3. The rather small differences between these integrations indicate
that the truncation errors associated with this integration scheme are small even
with a time step as large as two hours.
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5. Conclusion

A semi-Lagrangian time integration scheme can easily be combined with the
semi-implicit algorithm in a model of the shallow water equations. This combina-
tion enables us to increase the time step by another factor of four to six over
the strictly semi-impTicit model. This Teads to a substantial economy of compu-
ter time. ;

The true test of the proposed integration scheme will consist in trying to
use it in a complete multi-Tevel atmospheric model. Such an experiment is under-
way at present and some preliminary results will soon become available.
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Fig. 1 Initialized 500mb geopotential at 12:00 GMT
30 August 1981.
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Fig. 2 48-hour forecast of the 5G0mb geopotential valid at

‘Semi—Lagran

gian and

12:00 GMT 1 September 1981.

semi-implicit model with a two hour time step.
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Fig. 3, 48-hour forecast of the 500mb geopotential valid at
12:00 GMT 1 September 1981. Semi-lLagrangian and
semi-implicit model with a one hour time step.
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