Application of semi-implicit and semi-Lagrangian
integration schemes to a limited area
atmospheric model.

André Robert, Tai Loy Yee and Harold C. Ritchie.

The formulation of a multi-level atmospheric model is discussed. In particu-
lar, the time integration scheme used in this model is described in detail. This
scheme is both semi-implicit and semi-Lagrangian. The calculations are broken
down into separate segments for each of three time levels. One of these segments -
involve interpolation of the variables to upstream points and another segment re-
auires the solution of a Poisson equation in three dimensions. The description
of the method is followed by an integration of the model with a time step of 90
minutes. The integration scheme appears to be stable and the forecast seems rea-
sonable.

1. Introduction

A substantial number of atmospheric models use a semi-implicit algorithm
in order to carry out the time integration. With such a scheme, one can use lon-
ger time steps and reduce the computer time required to produce predictions. 1In

the semi-imnlicit scheme the size of the time step is no longer restricted by the.

phase speed of the external gravity wave. It is limited mainly by the magnitude
of the wind associated with advection.

For problems that are strictly advective, it is sometimes desirable to use
the Lagrangian technique. For such a problem, most Lagrangian schemes are uncon-
ditionally stable. In an atmospheric model, it might prove advantageous to com-
bine a Lagrangian scheme with the semi-implicit algorithm.

Such an experiment was performed by Robert (1982). In this experiment,
the shallow water equations were integrated with a time step of two hours. Ano-
ther similar experiment was performed by Bates and McDonald (1982). Here, a
multi-Tevel model was used with a time step of one hour. In this model, a semi-
Lagrangian scheme is combined with the split-explicit scheme. This version of
their model (with &X = 30 minutes) was incorporated into their forecast pro-
duction system with a reduction of 38% in computer time.

Here also, a semi-Lagrangian scheme will be combined with the semi-
implicit technique in a three dimensional forecast model. An integration will be
performed in order to show that this scheme is stable. A detailed description of
the proposed scheme will be given for those who may wish to apply it to their own
model.

2. Formulation of the model

The meteorological equations will be given in a vertical sigma coordinate

system where

s

while /? is pressure and /bs is the pressure at the grbund (Tower boundary).
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These equations are
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In these equations, /L is the map scale associated with a conformal pro-
jection, LAk, &7 represents the true wind vector while [U,V] is a suitable mo-
del wind vector with its components along the cartesian [)(fy] coordinates of
the projection. :

"~ As we can see from eqn({6), the hydrostatic approximation is used. These
equations involve a few other minor approximations that will not be discussed
here.

In order to apply the proposed algorithm to these equations, the vertical
advection will be taken out of the total derivative and will be treated separa-
tely. Also, the temperature and the geopotential will be replaced by

T= T*+T' | (9)

$ = G - RT*P (10)

where 1—5&15 a temperature that is only a function of T . A1l terms containing
both T% and T' will be broken down in order to separate these variables. Fi-

nally, a time average will be applied to some of the terms. Our system of equa-
tions will then take the form
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At this point, we will start considering the calculations that will have
to be carried out by the computer. These calculations will be broken down into
segments and the first segment will consist in calculating all the explicit terms

appearing in each of the four equations given above. The four corresponding re-
sults are obtained from:
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and eqns(11) to (14) may now be reduced to
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Spatial finite d1fference approx1mat1ons are not considered in the formu-
lation of the model given above. It will be assumed in the following sections
that suitable finite d1fferences are used in all three space dimensions.

3. The time dintegration procedure

In order to carry out :che 1nteqrat1 4.
red at three points called A A° and A
are given as follows

A1—( X ‘, V ~'ZL+A2L) (23)
Ao()(-ol V-6, ,ZL} (24)
AT(X-2u,Y-2@, I-A%)

values of the variables are requi-
The coordinates of these points

(25)

where. X ,Y represents a grid point and (ok, O represents a displacement
This d1sp1acement is computed from the wind at the mid point.

= AT S°U°

(26)

= af S°V°

(27)

Time derivatives and time averages will be computed from:

%E = F+-E (28)
2 A

— % + -
F = E +F (29)
2

We will immediately introduce both approximations into eqns(19) to (22)
and we wil] group together all terms evaluated at the same time level. At time
+ A, we have the following terms
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On the other hand, at time /Z(‘AZL, we have
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S1nce the variables are known at time ,t- A'IL , we can immediately compu-
te , ﬁ3 and /2,4 . Our four differential equations will now take the
form

- o
= A + N =0 FoR K=(2,3,Y (38

Ve

A quick review will be given at this point. The first segment of computa-
tions consists in using eqns(15 to (18) to evaluate A at grid points from the
variables at time X .  The second segment consists in using egns{34) to (37) to
evaluate /3.< at grid points from the variables at time { {l Now we can
start the third segment of computations which consists in evaluating 4x

The first step consists in evaluating (oL, @ ). For this purpose we will
use an jterative procedure
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This procedure starts with the displacement (X,B) computed at the preceding ti-
me step and in general, it is found that two iterations are sufficient. Here we
find that we have to interpolate in the horizontal to obtain values of SU and
SV at the point given by the coordinates ( K- o™, Y- Q™). A bicubic in-
ternolation scheme is used for this purpose but one could use any other suitable
interpolation formula. Several suitable algorithms are discussed by Huffenus and
Khaletzky (1981) and also by Bates and McDonald (1982). _

The next step consists in calculating JL°® and }/2 at the appropriate up-
© stream points . . ' '

N = (X~ Y-B) (41)
/z" (%=1, V-2 R) | (42)

and here also a bicubic algorithm will be used. The calculation proceeds from a
set of four by four grid points selected in such a way that the specified up-

stream point Ties inside the central square of this grid. This is the condition
that guarantees the stability of the advective portion of the numerical integra-
tion.

The last step of this third segment of computations will consist in calcu-
lating

,?"' = /z' ~2atn° (43)

We are now ready to move on to the fourth segment of computations. It
consists in solving the following set of equations

U + Af%)g: : 7: | (44)
V+ A,”LLQ__G; = 7—,_ (45)
P+ AZ‘L[S(%{Z +gj\/() +0 | = 9 (46)
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for the variables U s \} , U','-I_ and [D . This is the implicit portion of the
computations and the solution is obtained by the method described previously by
Robert, Henderson and Turnbull (1972). This method consists in using the elimi-
nation process to reduce eqns(44) to (47) to a single equation containing one va-
riable. The result of this operation gives us
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As we can see from these expressions, we first compute f4 and then solve
a three-dimensional Poisson equation for G . In these equations, we have

x
X* = R <WC/, = ) (‘50)

{
= [,, 93 o (51)

GiVen 6; » we can compute the other variables
U = /7, -~ AZLQ_Q (52)
\V = 2~ Afb_G: (53)
7 X, |

P = %’3 Y S(&JZ +DV) \ (54)

o X Y
%_(Sr: = ggA-P_ - S(%.(Xl + %_é/_/) (55)
¢ = G- RT*P (56)

T‘-:*%a (57)

These computations complete a full cycle which is repeated until the
desired forecast is obtained.
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4. Mumerical integration

The first run with this model was performed from the analysed variables at
1200 GMT, 3 DEC 1982. The surface pressure at that time is presented in FIG.1.
For this particular run the model used a 33x33 grid with a mesh length of 254km
at 600N. Surface pressure is presented on a 13x13 window within the model
grid. A 24 hour integration with a time step of 90 minutes was carried out and
the resulting surface pressure is presented in FIG.2. The same integration was
also performed with a step of 45 minutes and the result is given in FIG.3. Fi-
nally, the verifying analysis is given in FIG.4. -

Another three similar integrations have been completed and from these four
cases, one can conclude that there are no apparent signs of instability. The
proposed scheme seems to be stable. Longer integrations have not been performed
yet in an attempt to confirm this conclusion.

From the integrations shown in FIG.2 and FIG.3, we can see that the surfa-
ce pressure is fairly sensitive to the size of the time step but we must not con-
clude from this that a time step of 90 minutes will give inaccurate predictions.
A suitable initialization scheme has not yet been incorporated into the model and
the mesh length of 254km is not adequate. A finer mesh will produce more accu-
rate interpolations and reduce time truncation errors.

5. Conclusion

By combining a semi-Lagrangian scheme with the semi-implicit algorithm for
the integration of the primitive meteorological equation, one can use substan-
tially larger time steps. The resulting integrations appear to be computational-
1y stable. It is not yet possible to say whether or not the integrations are ac-
curate and efficient. The development of the model has to be completed before
undertaking any experiments along these 1ines. Such tests are in preparation and
results will be published as soon as they become available.
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FIG. 1. Sea-level pressure analysis for 12:00 GMT
03 December 1982, '

209



A\

>
=

B,
'

T A
SN

NN

17

7,
o o
o
o
4
n® o
170! /5

valid at 12:00 GMT

FIG. 2 24-hour forecast of sea-level pressure

04 December 1982. Semi-Lagrangian and semi-implicit model

with a timestep of 90 minutes.
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FIG. 3 24-hour forecast of sea-level pressure valid at 12:00 GMT
04 December 1982. Semi-Lagrangian and semi-implicit model
with a time step of 45 minutes.
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FIG. 4 Sea-level pressure analysis for 12:00 GMT
04 December 1982, B ‘





