THE FLUX~-CORRECTION METHOD
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1. INTRODUCTION

The flux-correction method introduced by Boris (1971, 1975a,b) is a technique

for obtaining an improved numerical solution of the mass continuity equation
f =~ V.(pv) ' (1

in the vicinity of steep gradients.

Besides the usual requirement of stability and consistency, the numerical

scheme is subject to the conditions:

A. Positive solutions should result from positive

initial values.
B. For V = 0 the numerical process should not change p.

Condition B is rather important for meteorological applications. It is
generally not satisfied for flux-corrected methods, which tend to retain some

smoothing for V = 0.

Schemes subject to condition B are called phoenical and represent the most

interesting branch of flux-corrected methods for meteorological use.

A possible meteorological application of this technique is for the advection
of moisture in the vertical. Some of the errors involved in moisture
advection can be seen using the square wave test. This test uses a one-
dimensional version of (1) with periodic boundary conditions and constant wind
V; the initial condition is a step function. Here we are particularly
interested in advection over the whole vertical extent of the atmosphere}

, , At
which we assume to be represented by about 20 layers. We use VK; = .2, so that
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in 5 timesteps a disturbance moves one grid-interval. Fig.1 gives the results
of the centered difference scheme for 50, 100, and 600 timesteps. Even for
advection over short distances, considerable errors arise; this leads to

negative field values, which are physically unrealistic for a moisture field.

Numerical models usually include some simple remedy of this problem. One
method is to collect positive moisture from surrounding gridpoints whenever a
gridpoint value becomes neqativé. Of course this collection must be done in a

mass conserving way.

Fig.2 shows a forecast using this procedure. For short periods there is a
definite improvement; however for longer periods (N=600,. Fig.2c) it is
apparent that the accuracy of this second order method is still insufficient.

Particularly disturbing is the appearance of artificial plateaus.

The results shown in Fig.2a,b are used to define the level of performance

which should be improved upon by the flux-corrected methods.

The introduction of highly accurate methods does not in itself~improve the
forecast of steep gradients. Fig.3a,b gives the example of the spectral .
method in which neéative moisture has been avoided by using the same procedure
as applied in Fig.2$,b. We see that there are heavy oscillations at the upper
shoulder of the steep gradient region. Also note that in this example the
original Gibbs~error is noticeably enhanced by the time truncation error
introduced by the leapfrog-scheme. This kind of performance is not surprising
since an iﬁcrease in the order of the numerical method dées not necessarily

give an increase in the accuracy with which the smallest scales are treated.

The aim of this paper is to review the flux-correction technique with respect

to the vertical discretization of the moisture field. However we will not be

256



Xy ‘WOTINTOS 319BX® = OuUTT uryj °'sdojs awrl FO N sIaqumu

1USI9FFTIP XOF SPIOTF 31SBOSIOF ‘" = VA ‘oweyos o0uUSILFFIP poxajusd Joxydesy syl IOF 1597 9ABm saenbg T IF1g
009=N ) 00T=N (q 0G=N (e
“¥°0— —1 ¥ 0— 40—
z0— \l/ ~420- {2 0-
S¢ 0c¢ ‘ 0ol 9 GZT 0¢ Gl > > G¢ 0¢ Si (0]
r T T 0 I T T 0 I T T 0
Gl oL //\_m /\ g
41¢°0 . ~4¢°0 420
o 70 A
190 -19°0 <190
<180 180 430
Jdo-1 do-1 i 01

257



009=N (0 | 05=
0z 5L oL § 0, 9z__ 0z sz 0z st
z0 4o
70 4v0
90 . 490
480 180
dot Jo1

258




-uOT309TT0° Y3Ta poyjem Texzoeds Ioy Ingq ‘q‘wl "8t sy ¢ ‘314

001=N (a 0G=N (e
¥4 (0YA Gl ol g 0 GZ (oYA Gl oL § 0
rAl)
0
90
80

'l

¢0

70

90

80

0l

[

vl

259



concerned with the further development of the method for the discretization of

the two-dimensional Navier-Stokes equations; this is given in Boris (1972).

2. THE BASIC FORMALISM OF THE FLUX-CORRECTION METHOD

The flux-correction method first introduced by Boris (1971) as a rather
special scheme, was later developed by Boris (1975a,b) into a rather flexible
technique, which makes it possible to derive flux corrected versions of most

of the usual finite difference schemes.

The flux-correction method is based on the notion that the usual numerical

schemes can be made positive by adding a sufficiently large amount of

t t+it et : .
diffusion. (A scheme {pv}+{pv } is called positive if pv>0 implies
t+At . o . . . .
pv 20). A nonlinear antidiffusion operator is then applied which removes

the diffusion in regions where it is not needed.

The flux correction thus consists of three operations: the transport (denoted
by T) the diffusion (denoted by D) and the antidiffusion operator (denoted by
A). It can be written as:
1 o -
{o,} = 148y (144D {07} (2)

where V denotes the gridpoints.

The diffusion can be supplied by an explicit diffusion term-or by an implicit

diffusion of the transport operator.

Let the operator (1+T+D) have the form
P, (E+AE) = p (t)+bt B, (erbe/2)

+ {n [0, (E)) = P (£)]-n lo, () = p

V+1/2 v -1(t)]} (3)

v-1/2 v

with

n (pv(t) -p _1(t)) being the flux associated with the operator D.

v=1/2 v
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To define the antidiffusion step, we require the provisional flux

~

¢ o, . (t+At) - P, (t+it)] (4)

v172 = ez Pusq

The corrected flux is computed according to the following expression which is

the central equation of the flux correction technique.

~

¢

= s max {0,min (A .5} (5)

V+1/2 v-1/2's’ v+1/2” Av+3/2

with

Av+1/2 = Dv+1(t+At) - Dv(t+At)

and S = sgn Av+1/2
The field at t+8t is then obtained by applying the corrected antidiffusion:

pv(t+At) = pv(t+At) - ¢ + ¢ (6)

V+1/2 v=-1/2

Detailed descriptions of many versions of the flux~corrected schemes (like
Lax-Wendroff, upstream differencing, and leapfrog) are given in Boris
(1975a,b). However some of these schemes, like the leapfrog scheme go
slightly beyond the formalism defined by Eqns.(2)-(6). Also, the flux-
corrected Fourier scheme can not be easily geheralised for application to
nonlinear problems. Therefore its results were derived only to get an

impression of the performance of a highly developed flux corrected scheme.

Here we do not give details of how to implement all the schemes mentioned
above; for this information refer to the papers cited. However, as an example
of the implementation of a flux-corrected scheme, we will describe the

scheme SHASTA introduced by Boris (1971).

3. SHASTA, AN EXAMPLE OF A FLUX-CORRECTED SCHEME

The characteristic feature of this scheme is the use of a quasi-Langrangian
scheme for the transport stage. It is described for a constant gridlength

Ax.

261



We assume the field p is composed of trapeziums, as shown in Fig. 4 (solid
lines). For constant Ax this assumption is consistent with the mass formula
= X A 7
M =1Z0p, bx (7)
The chain-dashed trapeziums result from the application of a Langrangian
transport step and the small arrows indicate the Langrangian advection of the
gridpoints
§ = A 8
v Yy Bt (8)
We assume

v At
v 1
gax '—_K;_‘ < 5 (9)

in order to ensure that no crossing of gridpoints occurs.

The amplitude values of p*, which belong to the advected trapezium, are

0

p+ _ p\)+1 Ax : V (10)
v o 1/2 1/2

Ax + At(V\)+1 - Vv )

99 Ax

by = Y 1/
A 1/2 2

Ax + At(vv+1 -V, )
1/2

Where Vv is the Vv value at t + At/2.

The diffusion step is performed by transforming the shaded area Fv in Fig.4

into a square, then
pv(t+At) = ix (11)

For a uniform velocity field, the time-translation equations are:

~n+1 n vAt n n
Py TPy T 2k (Pugpq T Pusy) (12)
1 1 vAe 2 n n n
gty O MRy 20yt ey )

Where the index n denotes the time level.
Therefore, in the linear case the scheme reduces to the one-step Lax-Wendroff

scheme.

From (11) or (12) we see that the diffusion is still large even when V=0.

Fig.5 shows the field after one timestep with V=0.
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Fig, 4 =——————Field at time t, ~——-——-Field at time t +At before

the diffusion step. The staded area F ., is used to compute p(t+ A t)
from pv(t+-At). A x=F, . The small arrows represent the lagrangian

advection of the gridpoints in one time step.

v—-1 1 v+1i

Fig, 5 Action of the numerical diffusion for zero velocity.
= initial

————————— = after one time step.
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The antidiffusion step is performed according to (4) and (5) using

n =

1
v+1/2 8 (13)

The antidiffusion removes the effect of the smoothing for the larger scales.
It should be noted, however, that the smoothing of the field shown in Fig.5 is
not removed by the antidiffusion step, so that the dashed line also indicates

the field after the antidiffusion step.

4. NUMERICAL TESTS FOR SOME FLUX CORRECTED METHODS

Fig.6a-f shows the result of the square wave test, taken from Boris (1972,

1975,a,b), for several flux-corrected methods.

The schemes shown are the SHASTA-scheme described in Sect.3, the phoenical-
Lax-Wendroff scheme and the leapfrog 1-scheme of Boris (1975a), along with the
Donor cell, reversible flux-corrected transport scheme and the Fourier method

described by Boris (1975b).

‘ At
The test uses the linear advection eguation ((1) with V=const) with “hx o .2

for 800 cyles.

Figs.6a-d show the result of explicit flux corrected schemes, based on (2) to
(6), except for slight modifications of the leapfrog l1-scheme. The phoenical
Lax-Wendroff scheme appears to be the best of these schemes, since it

. requires 7 points on the shoulder.

The schemes presented in Fig.6e,f go essentially beyond the formalism of (2)-
(6). The Fourier method (Fig.6f) uses knowledge of the exact solution for
V=constant, and it's application to the general case is not straightforward.
The scheme was analysed in order to get a limit on the behaviour of rather

good schemes.

The reversible flux-corrected transport method, described in Boris (1975b), is
an implicit method requiring the inversion of a tridiagonal matrix. Boris
(1975b) reports thét this scheme behaves badly in nonlinear problems. For
linear advection, however, the scheme shows the best results of all schemes

which can be generalised for the nonlinear case.

There are typical errors associated with the flux~-correction method. The

phoenical schemes remove the diffusion for V=0 for only the larger scales. It
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Fig. 6 The square wave test for several flux corrected schemes, according
to Boris (1975 a,b) for 800 cycles with VAt =.2
Ax
exact solution

eeo 0000 = approximate solution
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is found that sharp peaks in the fields are transformed into typical plateaus.
This error, which is called clipping, is illustrated in Fig.7. It shows the
result of one timestep with V=0 on a sharp peak. In particular the SHASTA

scheme of Sect.3 smears the peak considerably.

5. TWO EXAMPLES OF FLUX-CORRECTED DIFFUSION

Instead of applying diffusion and antidiffusion, it is natural to try to use
the diffusion in a controlled way. This method, called flux corrected
diffusion, was tested by Boris (1975a); the results compared unfavourably
with the SHASTA method and this reflects the fact that the diffusion and

antidiffusion can improve the phase error of a method.

Here we try a refined version of this method based on the fact that the
Lagrangian advection step, being the first stage of the SHASTA scheme, is a
rather good approximation of the dynamic equations. However, the remapping of
the resulting field onto the original grid is a rather coarse approximation,

making the antidiffusion steps necessary to partly reverse it.

We now try to replace the latter operation by a more refined one, so. that the
use‘of the antidiffusion operation can be avoided. We are also looking for
schemes which, in the V=0 case, leave the field unchanged and havé no clipping
error. This is achieved by computing the difference of the Lagrangian
advected field at t+At and the field at time t and remapping this field to the

original grid, whilst observing the positivity condition.
The first stage of the SHASTA formalism can be considered as a first order

finite element langrangian method. Here we will also consider the second

order element representation. The field representation are then
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Fig. 7 The clipping error according to Boris 1975.

Result of one timestep with V=0

—-—-— = SHASTA scheme of section 3.
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p(x) = I p e, (x) : [first order elements] (14)
plx) = & {pvev + pv+1/2 ev+1/2} [second order elements] (15)
with
— X—-x
v=1
— for xs{xv_1,xv}
AV VEY |
e (x) =
v X . ,~X
V+1
S E—— for xs{xv,xv+1}
Xur1
t— 0 otherwise : (16)
— 4(x-xv)(xv+1-x) e{ }
ev+1/2(x) - ( ; )4 for xElx,,X, 4
Xv41 *v
— 0 otherwise

It is not self-evident that an increase in the order of the field
representation will improve th; behaviour of the scheme in the vicinity of
steep gradients, since an.increased order necessarily increases only the
accuracy for the larger scales. However the numerical experiments have shown
an improved performance when the order of the field rebresentation is

increased from 0 to 2.
An impression of these flux-corrected diffusion schemes can be obtained by
considering the first order case for constant velocity and constant grid

resolution.

The Lagrangian step can then be written as

W

p(x) = 3 b, e (x) > p'(x) = § Py e (x) (17)

v
with

VAt

e (x) = ev(x-5) where §

The definition of e'(x) is illustrated in Fig.8.
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Define

»

v~1/2
. a, = Lv_3/2 e'v(x) - ev(x) dx
xv+1/2 .
b, = Lv-1/2 e’ (x) ~ e (x) dx (18)
xv+3/2
cv = vi1/2 e'v(x) - ev(x) dx

We compute the mass entrainment of the interval (x as

v=1/2' xv+1/2)

a = (19)

AV v+1av+1 * pV bV + pv—

1 v-1
The simple collection procedure described in the introduction is used to
derive o, in a way which is consistent with the positivity condition. The
time-stepping is then done by using
A =
p, (t#bt) =p (t) + aV/A?c (20)

It should be noted that the second order elements require a more refined kind

of mass redistribution.

The result of the square wave test (using the same conditions as for Figs.1-
3) is shown in Fig;9. The quality of simulation for extensive advection
(N=600) is similar to that of the flux corrected leapfrog 1 method or the
Dondr cell method. However the result is much better than the flux-corrected
diffusion scheme of Boris (1975a). The more refined method of diffusion
correction results in no loss of accuracy for performing diffusion and

antidiffusion in one step.

The result for the second order elements are shown in Fig.10c. The
predictions for N=600 are now comparable to the phoenical-Lax-Wendroff scheme,
which.represents one of the best explicit schemes presented in Boris (1972,

1975a,b).
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Figs.9 and 10a,b show the advection over 10 and 20 gridpoints, which

approximately represent the number of levels used in the ECMWF model.

6. CONCLUSIONS

The square wave test shows that there is some potential for improvement by
introducing the flux-correqted transport method in connection with the simple
finite difference schemes now used in the ECMWF model. When envisaging

the transition to some highly accurate method of vertical discretization, the
possibility of igcreasing the accuracy by diffusing and selectively
antidiffusing becomes less interesting; therefore some simplified approach to

flux-correction might be worth trying.

The schemes which are feasible still produce a considerable amount of smearing
of steep gradients for extended forecasts. Consequently further research
concerning these schemes may be necessary. One obvious approach is to solve
the technical problems in&olved in the implementation of the high performance
flux-corrected methods, such as the reversible flux corrected method or the
Fourier method. However it should be noticed that the use of the Fourier
method for vertical discretization poses some problems even without flux-
correction. Another approach could be based on the fact that the Lagrangian
forecast step is quite accurate for large timesteps. If one treats the
vertical advection term with an increased timestep, this would automatically
reduce the number of grid-remapping steps and thus increase the accuracy.
This approach was used for a more general equation by Leveque (1982), who

found a dramatic increase of accuracy associated with this method.
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