iraphics and GKS at the UK Meteoro

.

e}
[}
e
N
gy

C T Little
U.K. Meteorological Office
Bracknell, Berkshire, U.K.

Abstract

The current complexity of graphical systems at the UK
Meteorological Office are described very briefly, and the
necessity for standardisation discussed. The reasons for
choosing ISO standards are described as are the current
status of their implementiation, and future rlans.

1. Introduction

Early in the 1970s, the UK Met Office had only one mainframe,
an IBM 360/195, and only two graphics devices: a Calcomp
microfilm plotter, controlled by offline magnelic tape, and an
online, channel-connected, direct-beam-refresh vector graphics
display, an IBM 2250. @Roth devices were driven by very
similar software packages (Calcomp Electronic HCBS and IBM GSP
respectively).

When other vector devices were added during the 1970s, such as
offline Calcomp 1136 pen plotters, a version of the HCBS
became the de facto standard programming interface, Tt was
used with non-Calcomp devices, and even with raster devices.
The main features of this programming interface were:

a) device coordinates,

b) current position,

c¢) scaling and origin shift,

d) pen number,

The graphical primitives were:
a) single line vectors,
b) non-centred symbol strings,

Y

¢} centred marker symbols,

By the early 1980s, there was a CDC Cyber 205 supercomputer,
two IBM mainframes supporting interactive colour raster
terminals, storage tube terminals, microfilm plotters, and
offline pen plotters and many minicomputers with a wide
variety of graphics devices attached. The Calcomp based
programming inlerface was now inadequate because it did not
have; :

a) device independant coordinates,

b} colour,

¢} input facilities,

d} device independent picture storage.

There was also a serious soflware maintenance problem with the

many systems being interconnected and numerous conversion
packages being written to give compatability between

79




Calcomp-based applications and various proprietary, device
specific, software packages, such as IBM’s GASP and GDDM,

2. Initial GKS Experiences

In 1983, an early version of the Queen Mary College GKS
implementation (Version 7.0) was obtained and device
interfaces for the Calcomp microfilm plotters and IBM
GDDM-based terminals were written. Application software for a
research project, involving interactive graphical user
interfaces and device independence, was developed. This
involved the overlaying of complex pictures of vector graphics
onto radar images and eventually satellite images. The
software ran on the IBM mainframe and IBM 3279 low resolution
colour terminals with hard copy directed to a colour matrix
printer or monochromatic microfilm. The software was then
ported to an IBM 5080 to use higher resolution, more celours
and better interactivity. A very simple driver for the 5080
had to be written.

The relative ease with which this GKS-based application
software was ported, and the difficulty of writing a 5080
driver, led to the adoption of an organisation-wide strategy
of using GKS for new graphical applications, and using a
commercial implementation to support the wide range of
machines and devices in the Met Office.

GKS was adopted because:

a) It was about to become an International Standard, and was
machine, device and software vendor independent.

b) It was a well defined programming interface/language on
which to sit application layers {(some proprietary
programming packages had a mixture of graphical programming
routines and application routines).

c) Most proprietary, and ’Core’, packages had 3D
functionality, and this is unnecessary for most
meteorological applications.

d) GKS seemed to have technical advantages over ’Core’ (e.g.
bundles, no current position).

The GKS implementation from QMC was inadequate at the time
because:

a) it was Version 7.0, not 7.4, i.e. it conformed to an
earlier draft of the standard, not the standard itself,

b) it was incomplete (some input and most inquiry functions
were missing,

c) numerous device drivers would have to be written,
d) there would be inadequate maintenance support for Met.

Office purposes.

80 -



3. GKS Implementations
In 1983, criteria were drawn up for the selection of
appropriate GKS implementations. These were:

a) Availability from one vendor for both IBM and Dec machines,
tor ease of administrution and maintenance and lo ensure
transportability of applications programs and metafiles.

b) Support for a very wide range of devices, in particular:
IBM 5080 display terminals,
IBM 3279 display terminals,
Ramtek 9460 display terminals,
Sigmex 7000 dizsplay terminals,
Calcomp pen plotters.

c) Support for GKS Appendix E Metafiles, as opposed to
proprietary metafiles.

d) Suitable maintenance and support arrangements (e.g.
hot-line support available in Europe rather than the USA}.

e) Availability on other host computers, in particular:
IBM PC,
IBM 3270PC-AT/GX,
Dec PDFP11.

The first criterion reduced the known field of implementations
of nearly thirty down to about ten. The second criterion
eliminated all the remaining! However, four implementations
were available that claimed to support IBM 5080s, and one that
supported Sigmex 7000s. These implementations were all from
hardware independent suppliers.

The Sigmex 7000s were supported by the Rutherford Level 1b
implementation, GKS-UK, and it was installed on the two Dec
Vax1l1/750s to which these were connected.

The remaining four, commercial, implementations were all
tested during 30 day free trials, and benchmarks were run.
The benchmarks were:

a) applications to check visually the picture produced,

b) applications that wrote a series of increasingly larger
metafiles.

The latter were felt to be realistic tests. The applications
contoured complex data on a series of larger and larger
reclangular data gridg using standard production routines.

The Met. Office produces many complex pictures every day, and
many have to be produced overnight in batch, The pictures had
many polyvlines, with small amounts of polymarkers and text,
and were a typical of meteorological applications.

81




4, GKS Benchmark Experiences

The process of testing, on IBM and Dec machines, took over one
yvear, Some of the difficulties encountered porting the
benchmarks between the five implementations (the four on test,
and the original early QMC version) were: ’

a) whether default primitive attributes were bundled or
individual,

b) non-availability of pre—defined bundles on some
implementations,

c) adherence to earlier Fortran bindings and versions of GKS,

d) use of specific connection identifiers to indicate
variations in workstation type,

e} restriction to one active output workstation,

f) inability to optionally de-activate Metafile Out and
Workstation Independent Segment Store workstations,

g) undocumented limits on the sizes of cell arrays, polylines,
etc,

h) discrepancies from GKS Appendix E Metafile (e.g. 40 byte
first record) or gross inefficiencies (e.g. one item per 80
byte record),

Other problems encountered, but not specifically concerning
GKS, were:

a) plain bugs,

b) discrepancies between documentation and software,

¢) inadequate installation documentation,

d) inadequate support,

e) non—availability of required drivers,

f) late delivery.

Figure 1 shows some of the benchmark results. In this case
the metafiles were Appendix E binary metafiles for the GKS
implementations, and device specific formats for the device
specific packages.

5. - General GKS Experiences

‘Experience with the QMC GKS, the tested implementations, and
the ones now in use (GKS-UK and GKSGRAL) have produced the
following list of opiniouns:

- 82



a’ As can be seen frowm the benchmark results, and also Tound
in practice, GKS based applicaticns can take two to three
times longer {in CPU time} than the equivalent application
using device gpecific software. However, the applications
were originally device specific, and ’grafted’ onto GKS in a
simple way, and many GES functions are beipg duplicated in the
application caode, hence these results may be unduly
pessimistic. There ure indicaliens that, using an appropriate
device, such as a sophisticated graphics terminal, the higher
level functiocnality ol GKS can produce savings, reducing the
cost to be more similar to that expected with device specific
software {e.g. segments allow coastlines and overlays to be
generated once only and then reused}. A factor of two
incvrease In CPU time is only just acceptable for some
applications, and any increase, without anv other advantages,
is unacceptable for time-critical production codes. The
applications are basically all graphical, with non-graphical
calculations usually done separately on a supercomputer. it
is not envisaged that the overhead of GKS software compared to
device specific applications would decrease significantly
until many devices with GKS or the Computer Graphics
Interface, CGl, in firmware are available.

b} Internal limitations of implcmentations stopped the
display of large cell arrays {eg 256 x 256). A number of
applications were modified to use fi1ill areas instead.

¢} For very large cell arvays (eg 512 x 512) a one-to-one
mapping onto physical pixels is desired for efficiency and
accuracy of the displayved picture, This can be done by:

1} a cell array or GDP such that the world
ceordinates/normalisation trangformation maps onto the
phvsical pixels. There are efficiency savings only if
the implementation can ’sense’ this (useful for high
resolution satellite imagery),

2} bypassing GKS and writing a bit map to the device, and
calculating the world coordinates of the corners.

3 use fill areas, but with efficiency problems as the size

of each fill area approaches that of one pixel {useful
for lower resolution radar imagery),

d}) When a display with separately addressable bit planes is
used, it is very efficient and natural to store an image 1in
one set of planes, and overlays in other planes, using the
colour lookup table to contlrol visibility of each laver. The
overlays and underlying image are accurately registered with
eich other using some world coordinate system. GKS does not
fit this conceptual moedel of a workstation other than by
having two or more workstations, assigned to the groups of bit
planes, each with identical workstation windows and viewports.

e} When large c¢ell arrays {or GDP bit maps) are displaved,

standard Fortran requires these to be stored in the applic-
ation program inn integers (e.g. 8 bit image colour indices

83




stored in 32 bit integers). A solution is to augment Fortran
77 with shorter integers, or perhaps bit or byte data types.

f) Two different views of a single object (possibly being
updated) cannot be displayed without explicitly copying the
object and updating both copies (e.g. a small picture plus a
large zoomed portion of it).

g) A large number of application specific symbols and markers
are required, but there is no standard method of supplying the
requisite font information to the GKS implementations.

h) Because of the disparate devices used (e.g.. a high
resolution monochromatic microfilm plotter and a low
resolution colour raster terminal), bundled attributes are
found to be the best way of providing device independent
application software, providing the bundles are initially
defined in the implementation.

i) Numerous programmers, of varying quality, have been taught
GKS. One of the most problematic areas was the teaching of
segment manipulation using the Workstation Independent Segment
Store, the Copy, Associate, and Insert functions and their
effects on the displayed output.

j) The least used parts of GKS have been the query functions
and the sophisticated text control functions.

k) It has proved impossible to get device drivers for all the
devices available at the UK Met. Office from one, or even two,
vendors. It is hoped that the finalisation of CGI as an
International Standard will make it possible to buy drivers
and GKS from different vendors and have them work together.

6. Metafile Requirements

These are:

a) the storage and transmission of large numbers of complex
pictures, hence compactness and efficiency are of prime
importance,

b) the control of the appearance of a stored picture at
view/interpret time (i.e. to allow a picture to be exported
to, say, a TV company, who would enhance the appearence,
but without altering the geometric information),

c) within a metafile, the storage of seperate lavers of a
picture {(e.g. map background, sets of contour overlays,
satellite image underlays) to allow optional combining at
view/interpret time,

d) a mechanism for accessing a specific picture rapidly in a
large metafile is required (e.g. to allow a user to skip
forward or backwards a specified number of pictures, but
without having to view the intervening ones). This would

84



allow a machine independent graphical spools to be
conslructed, for us~ in the same way lLhal sgpools are used
now for alphanumeric output.

7. Summary

GKS is an appropriats slandard for the UK Meteorclogical
Office. However, many lilmplementation dependant variations
exist in implementations which does not enable portable
software to be produccd very easily. Efficiency is an
important issue until 1he majority of devices incorporate GES
or CGI functionality in firmware or huardware. The display of
large images with GKS graphical overlays is a problem and
cannot be efficiently tackled within GKS.

Because the efficiency and compaciness ol melafiles isg
important, the GKS Appendix E metafile is inadequate and the
Computer Graphics Metufile is preferred. Hence GKS and CGM
must be compatible with each other as much as possible,.

CGI is not adequatle or appropriate as an application
programming interface because multiple devices must he driven
by single applications. It is hoped that GKS and CGI will be
compatible with each other so that CGI devices can be driven
by GKS.

The Programmer’s Hierarchical Interactive Graphical System,
FHIGS, has too much functionality for current requirements and
GEKS-3D is not required al present either.

In the short term, CGM will be installed in the UK
Meteorological Office to replace GKSM, and the library of
meteorological symbols made available via GKS., GKS will also
be extended to support bit maps for the efficient display of
imagery. :

At present, the user interfaces of interactive applications
are relatively unscophisticated and applicaticen dependent. In
the next few years, application, device and host independent
standardised user interfaces will be required. In particular,
alphanumeric screen menus, used in conjunction with a
graphical display, need standardisation. Also the
standardisation of graphical applications writing to a simple
window on a sophisticated device is required.

- 85



CPU Time
200 A
150
GKS
100 4
Device
Specific
50 =
 Dummy
device
O : M
‘ ‘

16x16 32x32

Grid size

86





