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1. INTRODUCTION

Within the HIRLAM (High Resolution Limited Area Modelling)
project, an ongoing 3 year joint research and development
project among the Nordic countries and the Netherlands, a
series of experiments with alternative spectral represen-
tations and various time integration schemes have been

carried out. In the present paper the main results of these
experiments will be summarized. For a detailed description

the reader is referred to HIRLAM Technical Report No. 4, which
will be available before the end of the project (August

1988).

Most of the currently used medium range global models utilize
the spectral method for horizontal discretization.

For presently obtainable resolutions at least, global spectral
models seem to be more efficient as regards computer speeds
and memory requirements than grid point models. Due to a high
order of accuracy in the computation of derivatives, less
degrees of freedom are required to achieve the same degree of
accuracy. In particular linear advection is computed exactly
except for time truncation and round off errors and thus no
computational dispersion due to space discretization is
introduced. Principal non-linear terms are computed as a
least square fit, without any aliasing and consequently a
source of non-linear instability is eliminated. By the use of
representations in terms of surface spherical harmonics no
pole-problem is encountered and with a triangular truncation
a homogeneous resolution over the globe is achieved. As the
expansion functions are eigenfunctions to the Laplace opera-
tor, significant computational advantages are achieved in the
computations connected with horizontal diffusion, semi-
implicit time extrapolation and non-linear normal mode
initialization schemes. :
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The over all efficiency of the spectral method relies, however,
heavily on the efficiency of the transformations from spec-
tral to grid point space and vice versa, which are performed
each time step. The Fourier transformations in the east-west
direction are speeded up considerably by the use of FFT
routines. A similar "fast Legendre transform" to be used for
the north-south transformations has, however, not been
found, which implies an increasing dominance of the computa-
tional cost of the Legendre transforms with increasing
resolution. The efficiency of the spectral method, relative
to finite difference and finite element methods, therefore
decreases with increasing resolution. With present formula-
tions of global medium range forecast models an advantage in
efficiency of the spectral method probably still exists even
for the highest resolutions (T 106) used operationally.

The transform grid, in physical space, used in global models is
a lat-long grid, equidistant in longitude and very nearly
equidistant in latitude, when using a triangular trun-
cation. It should be possible, without significant loss of
accuracy, to decrease the number of points along the latitude
circles as the poles are approached, whereby the resolution
in the transform grid are brought closer to the homogeneous
resolution implied by a triangular spectral representation
(Machenhauer 1988). Such a formulation, which would improve
the efficiency, has, however, not yet been developed and
tested in practice.

Due to the over all advantages of the spectral method we
decided at the start of the HIRLAM-project to investigate the
possibilities for its application to high resolution regional
models.

One possibility, initially investigated, was, as

proposed by Schmidt (1977), to introduce a variable resolution
in a global spectral model. This could be achieved relatively
easy by modest modifications to the model equations, i.e. by
the introduction of mapping factors in certain terms.

An alternative was to try to develop a spectral limited area
model with prescribed time dependent lateral boundary values
obtained from a global model, similar except for the horizon-
tal discretization to the finite difference LAM that were
under parallel development and tests within the HIRLAM-
project (Machenhauer (1988)).

Experiments aiming at such a spectral LAM had already been
started up at ECMWF by Simmons (1984) and shortly after the
start of the HIRLAM-project we learned that a similar devel-
opment had taken place at the Japanese Meteorological Agency,
JMA, where Tatsumi (1985) had carried out tests with very
promising results.
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2. BACKGROUND OF THE CHOICE BETWEEN THE TWO ALTERNATIVE
APPROACHES .

The approach suggested by Schmidt (loc. cit.) must be very
attractive for a centre which wants to run operationally a
medium range prediction system as well as a regional short
range prediction system. It seems possible that the same
model in relatively similar versions, can be used for the two
purposes. Thus, if this turns out to be the case the main-
tenance and development of the combined system would be
easier than for two separate systems. The experimentation and
further development of the Schmidt approach undertaken by
Courtier and Geleyn (1987) is therefore certainly relevant.

In the weather services participating in the HIRLAM-project,
however, the plans are to develop a short range regional
forecasting system only and to rely on the ECMWF products for
medium range forecasting. Taking into account this situation
and the uncertainties as to whether it would be possible to
develop a spectral regional model that in all respects would
be competitive with more traditional formulations we decided
to put an effort primarily into the development of an up-to-
date grid point model.

In parallel with this development we decided to make experi-
ments with a spectral formulation which at a later stage
could be utilized with a minimum of changes to the primary
grid point system.

In the design and coding of the grid point model we have
taken into account this possibility and we have aimed our
development of a spectral formulation towards one that uti-
lizes a transform grid similar to the grid used in the grid
point model.

In the grid point model the integration area is a rectangle
with sides parallel to the coordinate axes in a rotated
spherical coordinate system. In a spectral LAM with such a
transform grid it seemed possible that the same expansion
functions could be applied in the two coordinate directions.
If a double Fourier representation could be used, an advan-
tage over global models, and thus over Schmidt's approach,
would be that FFT's could be used in both coordinate direc-
tions.

An additional advantage would be that, unlike global spectral
models the ratio between the resolution in the grid and in
the spectral representation would be homogeneous over the
integration area.
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Finally, if we had chosen the Schmidt approach we would have
had to use a variable resolution over the area of interest.
Although this may ultimately turn out to be an advantage
several problems may be anticipated. They can probably be
solved, but it will be an additional task which will require
an unpredictable amount of development work. With the app-
roach we have chosen, it is possible to have an almost
homogeneous resolution over the integration area, at least
initially, and then later on to introduce a variable resolu-
tion, if this turns out to be desirable.

3. BACKGROUND OF THE NEW SPECTRAL FORMULATION.

When trying to formulate a spectral one-way interacting
limited area model, which should build upon a representation
in terms of double Fourier expansions, the main problem
encountered is how to formulate the boundary conditions.
Usually the externally determined boundary values are
imposed in a -boundary zone by a relaxation scheme. This
procedure is used in the spectral LAM's developed at ECMWF
and JMA and will be used in our formulation as well.

The problem is, of course, that when Fourier series are to be
used a cyclic domain is assumed. As the boundary relaxed
values as well as their slopes are in general different at
opposite boundary points, discontinuities in both quantities
are introduced when the domain is made cyclic. A Fourier
series representation can be used in spite of such discon-
tinuities, but in general problems with very slow convergence
of the series and large Gibbs waves in the resulting represen-
‘tation will be experienced in the neighbourhood of the
discontinuites, i.e. at the boundaries of the integration
area.

In the scheme proposed by Simmons (loc. cit.) a boundary
relaxation scheme is applied at the end of each time step.
This implies that the deviations of the variables from the
corresponding background fields, toward which the fields are
relaxed in the boundary zone, become zero at the boundary.
Thus, such deviation fields have no discontinuities of zero
order at the boundaries. Simmons' initial suggestion was to
represent only such deviations spectrally and to use repre:
sentations in terms of truncated double sine series. The
prediction equations used for the deviations involve not only
the deviation fields but alsc the background fields as well
as the time derivatives of these fields. For efficiency
reasons at least, the appearance of the background field and
its space and time derivatives in the prediction equations is
a disadvantage, as these additional quantities must be
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computed and used over the whole integration area each time
step. Furthermore a basic property of the spectral method is
lost as the time derivatives of the deviation fields due to
non-linear interactions do not become truncated series of
the expansion functions. Thus the transform method does not
ensure least square fit and aliasing free truncations.

Some of the drawbacks of the formulation suggested (ini-
tially) by Simmons is less pronounced in the spectral formu-
lation proposed and tested by Tatsumi (1985, 1986). He is
using representations of the variables which in each direc-
tion are either a sine or a cosine series. The quantities
represented is deviations from certain large scale fields.
These large scale fields (represented by Fourier components
with wave length of the order of, or larger than, the dimen-
sions of the integration area) are determined from the
boundary values. The representations of the deviation fields
satisfy solid wall boundary conditions and the large scale
fields are added in order to specify quantities (values of
variables and their derivatives normal to the boundaries)
that are not determined by the solid wall boundary condi-
tions. As in Simmons' formulation the prediction equations
for the deviation fields involve, beside deviation fields,
also the large scale fields and their time derivatives. Thus
also in the Tatsumi formulation externally determined fields
are needed in the whole of integration area but these are
more easily determined than the full background field quanti-
ties that are involved in the formulation suggested by
Simmons. Like Simmons' method Tatsumi's formulation gives no
guarantee of least square fit and non-aliased truncations.
However, it seems likely that these properties are maintained
to a larger extent in Tatsumi's formulation than in that of
Simmons'. '

It should be mentioned that certain changes have been made to
the formulation suggested initially by Simmons, so that in
particular the choice of basis-functions used at present at
ECMWF corresponds more to the Tatsumi formulation.

In the following section we shall briefly present an alter-
native formulation. In this new formulation we avoid the
inclusion inside the integration area of quantities deter-
mined from the background field, except, of course, in the
relaxation zone. The formulation implies a representation of
the variables by full Fourier series and not just sine or
cosine series. A model based upon this formulation becomes
less complicated and probably more efficient than the pre-
viously proposed formulations, referred to above.
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Sketch of the relaxation coefficient Y in a cross-
-section along the A-axis.
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4, THE NEW SPECTRAL REPRESENTATION

As illustrated in Figure 1 we use an integration area which
is rectangular in a rotated spherical coordinate system with
coordinates A and ¢ . The choice of coordinate system is,
however, not essential. Along the boundaries inside the
integration area we define a relaxation zone and outside the
integration area along the northern and eastern boundaries we
define an extension zone.We introduce the coordinates g and

R , defined in Figure 1, which both run from 0 to 2y over
the extended area.

We want to represent a certain variable g{ o, B, t ) by a
truncated double Fourier series of the form

R 85(8,t) ,
gla,B,t)= — +3 ( g;(B,t) cos mo + g;(B,t) sin ma ) (1)
m=1
where
mo(t) N
g;(B,t)= 2 — 4+ 3 ( ggcn(t) cos nf + ggsn(t) sin nf )
n=1 ’ ’
for m= 0,1,....... »M
g2c () N
g;(B,t)= —— + 7 {( gicn(t) cos np + gisn(t) sin ng )
n=l » s

form= 1,2,....... M

In order to determine the expansion coefficients in these
series by a usual discrete Fourier transform (FFT) we need
grid point values gi,j over the whole extended area. These
are obtained from gria point values (gI)i,j evaluated in the
transform grid inside the integration area and from grid
point values gi,- evaluated from the corresponding background
field in the relaxation zone and in the extension zone. The
two fields are fitted together using the relaxation scheme:

C o= (y. g, Lty L B L
glyJ ( YlsJ)(gI)lxj Yl,J glaj

Where Yi,§ = 1 in the extension zone and decreases to 0 over
the relaxation zone (see Figure 3).
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The grid point values g . are obtained from a truncated Fourier
series representation of ghe form (1) which in turn is
determined by a discrete Fourier transform using some exter-
nally determined grid point values g1, as input. The back-
ground field g will typically be a field determined from a
large scale forecast. We suppose it is given as a grid point
field in the transform grid over the integration area. The
basic idea utilized in the present procedure is to extend
this grid point field into the extension zone in such a way
that a smooth transition is obtained from the values at one
boundary to those at the opposite boundary.

The extension of the €i,7 field is done as follows:

From gi,j we determine at first, at all boundary points, the
slope normal to the boundary. Next we use these slopes and
the boundary values of § to determine continuous functions in
the extension zone which smoothly connects opposite

boundary values of §. These functions are then used to
determine grid point values gi,j in the extension zone.

The representation § obtained by a discrete Fourier transform
of this extended grid point field gi,3 is a least square fit
with equal weight given to all grid p01nts in the extended
area. The extension of the grid point field g1, j serves to
create a smooth transition between values at opp051te
boundaries and thereby to avoid Gibbs waves within the inte-
gration area. By the procedure chosen we try to get a smooth
transition of values as well as of the derivatives normal to
the boundaries.

The broader we make the extension zone the smoother does the
transition acrogs boundaries become and the less will the
representation § inside the integration area be influenced by
the auxiliary values introduced in_the extension zone. With a
sufficiently broad extension zone § will fit closely the
given grid point values 81 3 inside the integration area and
at the boundary points, assuming, of course, that g4 ,j is
sufficiently large scale to be representated well w1th the
truncation used. In experiments reported on in the following
we have used a width of the extension zone equal to 15-20 %
of the sides of the integration area. In Figure 2 is shown an
idealized sketch of the final representation g, in an "east-
west" cross section, obtained for a variable g. Notel that
only g is used in the prediction equations and that g is used
only as a field that is relaxed to in the boundary and
extension zones.
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5. SUMMARY OF TEST RESULTS.

5.1 Model and initial data sets.

The representation described above has been tested in a
shallow water model. Model equations on a form similar to
those used by Tatsumi (loc. cit.) have been used, except for
modifications due to our choice of coordinate system. Tatsumi
uses a Cartesian coordinate system on an arbitrary conformal

map projection, whereas we have used rotated spherical
coordinate systems.

We have made tests with the usual "lat-long" spherical
coordinate system as well as with a new system which gives a
more uniform resolution over the integration area. This new
coordinate system, suggested by one of the authors, J. E.

Haugen, will be described in the coming HIRLAM Technical
Report No. 4.

Two sets of initial data were used in the tests performed.
The first set was a large scale Rossby mode obtained as an

eigensolution to a linearized hemispheric spectral model. Two
versions: were used:

1) the uninitialized fields

and 2) the initialized fields obtained by using the

non-linear normal mode initialization (NNMI) scheme of
Machenhauer (1977).

The other initial data set was a '"real" data set obtained
from a HIRLAM baseline 500 hPa analysis.

5.2 Experiments with Rossby mode initial data.

Several experiments were made with the Rossby mode initial
data. In all of these experiments boundary (or background)
fields were forecast fields obtained with a semi-implicit
R51 Hemispheric spectral shallow water model, given every
6th hour up to 36 hours after the initial time.

The limited area used was approximately 4500 x 4500 km? and
centred.at a point at 50° N. In the LAM a truncation
approximately equal to that used in the Hemispheric model was
used. Thus, we could test the formulations used in the LAM

since its results should be more or less equal to those of
the hemispheric model.
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a) Experiments using the leap-frog scheme:

Experiments with the leap-frog scheme showed clearly that
when large scale gravity oscillations were present in the
initial field and in the subsequent hemispheric forecasts
used as boundary fields, significant deviations between the
LAM and the hemispheric forecast were experienced, whereas
when such oscillations were eliminated by a hemispheric NNMI

of the initial fields almost perfect LAM forecasts were
obtained.

b) Tests of a LAM NNMI scheme:

The initialized hemispheric fields were then used to test a
NNMI scheme developed for the LAM. The normal modes used in
this scheme were obtained assuming a basic state at rest and
mapfactors as well as the Coriolis parameter set equal to
constants. The linearized forecast equations were assumed to
be valid over the whole LAM area, including the extension
zone. As the normal modes, with these assumptions, have
horizontal structures equal to the Fourier components used in
the expansion transformations between normal mode
coefficients and Fourier coefficients become extremely easy.

In order to get the scheme to work properly it was found
necessary to use background fields that were geostrophically
balanced. With such background fields the projection on the
gravity modes of the tendencies in the extension zone become
zero. If unmodified background fields were used large ageo-
strophic tendencies in the extension zone lead to spurious

initialization increments also in the adjacent integration
area.

With this modification the LAM NNMI scheme seemed to work
properly. As should be the case it gave only small increments
to the hemispheric initialized fields within the LAM inte-
gration area. Futhermore, almost identical forecasts were

obtained with and without the LAM NNMI applied to the initial
data.

c) Experiments with a normal mode time extrapolation scheme:

As an alternative to a semi-implicite time extrapolation
scheme experiments were then made with the normal mode
initialization time scheme introduced by Daley (1980).

In this scheme the fields determined by the leap-frog scheme
at time level (n+l) At are corrected by substituting gravity
modes balanced at time level n At instead of the gravity
modes determined initially by the leap-frog time step. The
balanced gravity modes are obtained by one iteration step
with the LAM NNMI scheme, using as input the tendencies at
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time level n At, which were used in the initial leap-frog
time step.

This normal mode time stepping scheme was tested and found
to work satisfactory for the Rossby mode initial data with a
time step At = 900s, nine times the At used in the leap-
frog scheme. As should be expected the results were even
closer to the semi-implicit hemispheric forecast than those
of the LAM forecast with the leap-frog scheme.

5.3 Experiments with real data.

a) Integrations with leap-frog and with normal mode time
extrapolation schemes:

In the experiments described in the following we used as
background fields some HIRLAM baseline 500 hPa analyses from
the period O0UT 5 Sept. to 00UT 6 Sept. 1985, given with a 6
hour time interval. (The height fields are shown in Figure
3.1 in Gustafsson et al. (1986)).

We used an area of integration approximately equal to that
used in the HIRLAM baseline experiments (Gustafsson et. al.
(1986)), i.e. an area of about 4500 x 3600 km?. In a rotated,
spherical coordinate system a resolution of AX = A¢ = 0.5°
was used for the transform grid. This gives 82 x 65 grid
points in the integration area and we added an extension zone
with 14 and 15 grid points at the eastern and northern
boundaries, respectively. The spectral truncation chosen was
M = 29, N = 24 for the prognostic variables.

In all experiments the background fields used during the
integrations were obtained by linear interpolation in time
between the fields determined from the 500 hPa analysis
fields, given each 6 hour.

At first an integration with the . leap-frog time integration
scheme was made using the background field from 00 UT 5
September as initial state. A very noisy forecast was
obtained. When the initial field was initialized using our
LAM NNMI scheme an initially smooth forecast was obtained, but
noise was found to propagate with the speed of external
gravity waves from the boundaries towards the centre of the
integration area. When then the same initial data (and
background fields) were used in an integration with the
normal mode time stepping scheme, smooth forecast fields were
obtained over the whole integration area.

The initial height field and that after 1 hour obtained in
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Fig. 4 a) HIRLAM baseline 500 hPa height analysis from 00 UT
5 Sept. 1985, initialized using the spectral LAM

NNMI scheme.

b) 1 hour forecast with leap-frog time stepping from the
uninitialized analysis (not shown).

c) 1 hour forecast with leap-frog time stepping from the
initialized analysis (a).

d) 1 hour forecast with normal mode time stepping from

the initialized analysis (a).
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these three integrations are shown in Figure 4.

These experiments clearly demonstrated that it is important
to have well balanced initial and boundary fields. The last
of the three integrations demonstrated that the normal mode
time extrapolation scheme effectively removes the noise
created at the boundaries, due to unbalanced boundary fields.

In Figure 5a is shown the 24 hour forecast obtained with the
normal mode time scheme. With this scheme a time step
At = 600s was used.

b) Experiments with combined semi-Lagrangian/normal mode time
extrapolation schemes:

Before a decision could be taken on whether a spectral
alternative to the HIRLAM multi-level grid point model should
be developed, we found it necessary to test semi-Lagrangian
methods in the spectral shallow water model. If, for some
reason, such methods could not be used efficiently in the

spectral model, this would be a great disadvantage compared
to grid point models.

We have tested four different semi-Lagrangian methods using
the same area, resolution and initial/boundary data as in a).
The three schemes are:

1) The Geleyn scheme (personal communication)

2) The Ritchie (1986) scheme with bilinear, biquadra-
tic and bicubic interpolation at the mid-point of the
trajectory.

3) A new scheme suggested by Machenhauer. The
formulation is as in the Ritchie scheme, but the
departure point is taken as an even number of grid
lengths from the arrival point in both horizontal
directions. Such a scheme would not be stable in a.
grid point model, but in the spectral model it can be
shown to be absolutely stable for linear advection if
a certain, slightly more severe, truncation of the
spectral fields is used. The advantage is that the mid
point of the trajectory becomes a grid point, so that
no interpolation is necessary. The overhead in
required CPU-time is thereby minimized.

4) The Robert (1982) scheme with different interpola-
tions (as for the Ritchie scheme) at the departure and

at the mid point.

In all semi-Lagrangian experiments we had to reduce the
integration area. This was done by changing the boundary
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Fig. 5:

24 hour forecast from the initialized 500 hPa analysis
valid 00 UT 5 Sept. 1985 (see Fig. 4a).

a) Eulerian integration on full area, At=10 min.
b) Eulerian integration on reduced area, At=10 min.

c) Semi-Lagrangian integration, Robert method,
At=60 min.

d) Semi-Lagrangian integration, Machenhauer method,

At=60 min.
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relaxation scheme so that the outermost 8 grid point values
after each time step were relaxed completely to the
background values. This transition zone between the
integration area and the extension zone was introduced in
order to ensure that no trajectory had its departure point in
the extension zone. The transition zone had to be taken from
the original integration area as the background fields were
only available on this area.

After some experimentation we found that it was necessary to
compute the balanced gravity modes to be used in the normal
mode time scheme from Eulerian tendencies. When we computed
them from the preliminary semi-Lagrangian explicit forecast,
instability of the shortest resolvable wavelengths occurred.

Compared to a usual normal mode time step, some additional
spectral transforms are needed in all four semi-Lagrangian
schemes.

Stable integrations with a time step of 3600s were performed
with all the semi-Lagrangian schemes. When bicubic
interpolations were used in the Robert and in the Ritchie
schemes very similar results were found for all schemes. We

had expected to see more damping in the Geleyn scheme than in
the other schemes.

An Eulerian integration (Fig. 5b) over the reduced area
showed systematic deviations from the Eulerian integration
made over the full area (Fig. 5a). Basically these deviations
implied a sharpening of a main ridge, which is entering the
integration area from the west, as well as a sharpening of
the main trough when it approaches the eastern boundary of
the integration area. The Lagrangian integrations (Fig. 5c
and 5d) showed the same deviations, but significantly less
pronounced. Thus, semi-Lagrangian integrations compared more
favourably with the Eulerian integration on the full area,
which must be assumed to be the most "correct" integration.
This may be due to a more correct treatment of the advection
near the boundaries in the Lagragian integrations.

In Figure 5 is shown only two of the semi-Lagrangian
forecasts, one using the Robert scheme (5c) and one using
the Machenhauer scheme (5d). The time step used in the
semi-Lagrangian forecasts were At = 3600s, six times that
used in the Eulerian forecast.

In all integrations shown we have used the "elliptic"
spectral truncation defined by (N/M)?*m? + (N/M)?2n? < N?,
which gives an isotropic and homogeneous resolution over the
extended area.
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6. CONCLUDING REMARKS

Our conclusions from the shallow water experiments reported
above is that the formulations tested seem to work properly
and that they justify the development of a full multi-level
model based on these formulations. Such a development is
necessary in order to make realistic comparison with the
HIRLAM grid point model. Unfortunately, this will not be
possible within the present HIRLAM-project. However, such a
development is recommended to be taken up in a planned
continuation of the present HIRLAM-project.
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