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Abstract
We use the spatial coherence of the fit of analyses to observations as the
bagis for new diagnostics of the performance of any linear objective analysis

system. The diagnostics provide answers to such gquestions as:

* Is the system using mass (or wind) observations efficiently?;
* ‘Is data on mass/wind balance used efficiently?;

* What is the effective data density?

Up to now these questions could only be answered indirectly, by evaluation of
the forecasts resulting from the analyses,_or by study of the changes made by
the initialisation. The lack of simpie objective methods to address these
questions has sometimes resulted in controversy about the interpretation of

data impact studies.

Suppose, in a practicel analysis system, that the observation errors are
uniform and uncorrelated, and the observations are homogeneously distributed.
We show (for any practical linear analysis system) that if the
Observation-minus—Analysis (OmA) auto-correlations are positive when
extrapolated to =zero separation, then the analysis has certainly not extracted
all the information from the observations, and does not fit the data to within
the observational error. If hcwever the extrapolated OmA correlations are
negative, then the_analysis system does fit the data to within observetional
accuracy. If, in addition, the weights given to the observations in the
analysis of the observed values are known, one can derive useful estimates of
the analysis error. at the observation points. This last result leads to an
estimate of the effective data density. Along with the new verifications of
mass and wind analyses, methods are developed to estimate the effectiveness

with which data on mass—wind balance have been used.
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The results for practical analysis systems are used to interpret empirical
determinations of the OmA auto-cérrelations in the ECMWF analysis system, for
data with uncorrelated errors. We shall say that a practical analysis system
is efficient if the data are fitted to within observational error, and is
inefficient otherwise. The methods demonstrate that operational
mid-tropospheric wind analyses over North America are quite efficient, but
that the windshear and thickness analyses near the tropopause over North
América are inefficient. The analysis of mass wind balance over North
America is efficient for any single level, but the analysis of thermal wind
balance for thin layers near the tropopause is inefficient, most notably on

short horizontal scales.
The analysis of the wind shear near the tropical tropopause is somewhat
better than over North America, probably because of the use of sharper

vertical structure functions.

1. INTRODUCTION

The most expensive aspect of producing a weather forecast is the taking and.
transmission of observatioﬁs. The annual cost of this essential pierequisite
to the forecast process far exceeds the annual cost of running a forecast
centre. It is necessary therefore to ensure that forecast centres make the
best possible use of the observations. This paper is an attempt to quantify
the extent to which an operational data assimilation system extracts all

useful information from the radiosonde network.

Many investigations of the quality of objective analyses have used either bulk
verification statistics or forecast verifications to evaluaté analysis
performance. These methods are valuable but they have important limitations.
The forecasts are the acid test of analysis quality, but they are expensive,
and they do not provide the guidance needed to identify analysis problems. On
the other hand, bulk statistics on the mean and standard deviation of the
Observation minus Analysis (OmA) differences are cheap to generate and have
proved very useful in diagnosing 'zero-order' problems with the data or with
the assimilation system (Hollingsworth et al, 1986, Uppala, 1987). Once the
blatant problems have been eliminated, one needs more refined diagﬁostics to
identify 'first-order' problems which must be overcome to bring a system to a

high level of performance.
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In this papef we show that the spatial coherence of the fit of the analyses to
the data is a sensitive diagnostic of the accuracy of the analysis system,
provided the observation errors are uncorrelated. The spatial correlations of
the Observation minus Analysis (OmA) differences provide both qualitative and
quantitative information on analysis accﬁracy, and are much more informative

than a bulk measure of the fit.

We shall say that an analysis system which fits the data to within
observational error is efficient, and that an analysis system which does not
fit the data in this way is inefficient. The qualitative results on analysis
accuracy provided by the spatial coherence are derived and discussed below,
and are summarised here for convenience: If the (extrapolateq) OmA spatial
correlation is positive at zero station separatioh then the analyses do not
fit the data to within the observational accuracy, and the analysis system is
inefficient. If the (extrapolated) OmA spatial correlation is negative at
zero station separation then the analyses do £it the data to within the

observational accuracy, and the analysis is efficient.

A simple example may illustrate this result. Suppose an analysis system is
presented with two series of equally accurate observations from a pair of
closely spaced and uhbiased stations. One expects the truth to lie somewhere
between the two observations, and so a good analysis system will compromise
between them. In such a case there will be a zero or negative correlation
between the two time series of OmA differences at the statiohs. If however
the analysed values at the two stations tend to lie to one side -or the other
of'both observations, then the analysis system cannot be very accurate, and

the correlation of the OmA differences will be positive.

The quantitative'information on practical analysis accuracy is derived for
analysis systems which are linear in the observations. Many operational
analysis systems are linear in this way. For such linear systems one can
always define the weight given to an observation in the analysis of the
observed value. There is a simple quadratic relationship between the rms
analysis error at the observation points, the average value of these weights
at the observation points, and the value of the OmA correlation at zero
separation (derived by extrapolation). If a linear analysis system is

efficient, knowledge of the average of these weights, and of the OmA
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correlations, provides a useful quantitative estimate of the rms analysis

error at the observation points.

Amongst linear analysis systems there is the theoretical, but well-defined,
optimal interpolation analysis system (O/I) (Gandin, 1965; Phillips, 1982)
which minimises the expected rms value of the analysis error at all points,
including the observation points. For this theoretical optimal analysis
system the quadratic relation between the weight, the OmA correlation at zero
separation, and the rms ahalySis error, simplifies to a pair of equalities:
both the Weight given to the observation in the analysis of the observation,
and the average squared analysis error at the observation points, are
proportional to the value of the OmA spatial correlation extrapolated to zero
separation. These results provide a means for judging_how well an efficient
analysis system performs relative to the theoretically optimum system. They
also enable one to.define a measure of the effective density of an obserVing

network.

The reasoning which leads to these results is developed in Sections 2 and 3.
We begin in Section 2 by reviewing the definition of the theoretical optimum
interpolation (0/I) analysis method. Many operational analysis systems are
approximations to this method. None of them are optimal, because of
limitations in our knowledge of the necessary statistics, or because of
limitations on the amount of data used in the calculation. We derive the
analysis error covariance matrix at the observation points for the theoretical
0/1 analysis. We show that for the 0/I analysis, the off~diagonal elements of
the analysis error covariance matrix can be calculated directly from the
corresponding terms of the OmA covariance matrix, provided the observation
errors are uncorrelated. This result implies (for the theoretical 0/I
system), that one can get a good estimate of the diagonal terms of the
analysis error covariance matrix by binning the off-diagonal terms of the OmA
covariance matrix according to station separation, and then extrapolating them

to zero separation.

This last reéult for the theoretical O/I analysis system suggests that it
ought to be possible to estimate the diagonal terms of the analysis error
covariance matrix of a practical system through extrapolation of the

off-diagonal terms of its OmA covariance matrix to zero station separation.
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For any practical analysis system, the OmA covariances may be readily
calculated for a wide range of station separations. Earlier work on forecast
errors, (Drozdov and Shepelevskii, 1946; Gandin, 1963; Rutherford, 1972;
Hollett, 1975; Julian and Thiebaux, 1975; Hollingsworth and L®nnberg, 1986
(hereafter called HL); L®nnberg and Hollingsworth, 1986 (hereafter called LH);

Thiebaux et al, 1986) provides useful guidahce on methods of extrapolation.

In Section 3 we use the guidance of Section 2 to derive a simple quadratic
relation (Eq 15) between the extrapolated OmA correlations, the weights used
in the analysis, and the rms analysis error at the observation peints; the
relation is valid for any linear analysis system, provided the observation
errors are uncorrelated and uniform, and the observation network is
homogeneocus. In the theoretical O/I system the quadratic relation reduces to
a pair of simpler equations (Eq 20 and 21). The results of Section 3 show
that in an efficient practical analysis system the extrapolated correlation
should be negative. In the theoretical optimal system its value should be the
negative of the weight used for the local observation in the analysis of the
observed value. It follows that if the practical system performs as well as
the theoretical system, then the weight actually used in the analysis
calculation should turn out to be close to the weight determined a-posteriori
from the analysis verification. In a sense this is a test of the practical
analysis through back-substitution. If the practical analysis system is
efficient, then one can determine the rms analysis errof at the observation
points. One can also make an estimate of the effective data demnsity. This
latter‘quantity indicates if there is a potential for increasing the ‘

resolution of the analyses.

The results of Section 3 can be used to examine the efficiency of operational
analyses of geopotential, Wind, thickness and wind shear. In Sections 4 and

5 we use them to show that ECMWF operational wind analyses in mid-troposphere
are quite efficient over North America, but are inefficient near the
tropopause. In Section 5 we extend the methods to provide estimates of the
efficiency with which data on mass-wind balance have been used. The same
methods - can also be used for examination of the balance between wind-shear and
thickness. We show that over North America the data on mass-wind balance is
used reasonably well at single levels near the tropopause, but that data on

the balance between wind shear and thickness is not used efficiently near the
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tropopause. Section 6 examines the quality of the upper-tropospheric wind
analyses in the Tropics, and concludes that the analyses are reasonably good
at observation points, insofar as their quality can be judged from ocur methods
with a sparse network. After a summary of the main points, Section 7

discusses the implications of the results for future work.

All the present results are strictly valid only at observation points, because
of‘the correlation between analysis error and observation error, whereas
results from OmF differences could be assumed valid at any point within the
domain of study. However an analysis system which performs badly at the
observation points can hardly be eﬁpected to do well away from them. Although
the present results are inherently limited by this restriction, they are

nevertheless valuable diagnostics of analysis system performance.

The results presented in the paper are based on calculations with radiosonde
data. Many observing system studies indicate that radiosondes are perhaps

the most vital single component of the Global Observing System in the
extra-tropics of the northern hemisphere. Given the simple nature of their
error structure, their importance makes them a suitable subject for this
study. The methods are general, and may be applied to mobile Qbserving
systems such as satellites, aircraft, and ships. We shall consider the degree
to which the assimilation system extracts all useful information from these

systems in a later study.

2. THE 0O/I ESTIMATE OF THE ANALYSIS ERROR COVARIANCE AT OBSERVATION POINTS

Many practical operational analysis systems have been developed as
approximations to the theoretical optimum interpolation (O/I) analysis method
developed by Gandin (1965). The multivariate form of the O/I analysis is
discussed by Phillips (1982) who shows that the theoretical multivariate 0/I
analysis is complete in the sense that a variational analysis cannot extract
(from the data) any further information on slow modes, provided the 0o/
analysis meets the following conditions: 1) the analysis is provided with a
first guess containing only slow modes; 2) the first guess error covariances
used are for slow mode errors only, and are accurately specified by a power
spectrum of slow mode error; the observation error covariances must also be

accurately known along with the cross-covariances of observation and first
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guess error; 3) all observations are used in the analysis for each grid-point

variable.

No practical operationai analysis system satisfies all the required
conditions. Nevertheless an understanding of the properties of the
theoretical 0O/I systeﬁ provides usefui'guidance for an evaluation of the
performance of any practical analysis system. In this section we derive an
ekbression for the analysis error covariance matrix A for the theoretical 0/I
system (Eq. 5), where A is defined at observation points. We then show .

(Eq 6b) that the off-diagonal elements of A are egqual to the off-diagonal
elements of the OmA covariance matrix (with sign changed), provided the
observation errors are uncorrelated. This suggests that by binning the
off-diagonal elements of the OmA covariance matrik of the O/I analysis
according to station separation and extrapolating to zero separation, one can
estimate the diagonal elements of A, i.e. the analysis error variances for the
0/1 analysis. Finally we show that for any linear analysis there is a simple
relation (Eg. 7) between the weight given to an observation in the analysis of

the observed value and the analysis error.

Consider the analyses made by the theoretical method of multivariate 0/I using
correct (climatological) statistics for first-guess and observation error, and
using all of the observations in a single matrix calculation (Phillips 1982).
Let D represent the covariance matrix of the observation errors at the set of
observation points, and let P represent the covariance matrix of the
prediction errors for the same observations; both scaled by the magnitudes.of

the prediction error in the usual way.

For any linear analysis system, the analysis equation for the analysed values

at the observation points may be written in the form

2:

=

s (1)

where § is the vector of differences between observation and first-guess at

the observation points (the data increment);

a is the vector of differences between analysis and first guess (the analysis

increment);
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[Wij] is the weight given to observation j in the analysis of observation i
and both o and § are normalised by the rms first—guess error.

For an optimum interpolation (O/I) analysis the weight matrix W is given by

I
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+
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o

(2)
where P is the correlation matrix of forecast error at the observation points
for the observed variables, and D is the corresponding scaled observation

error covariance matrix.

Eq (1) may be rewritten in the form

H=

a=p+W. (d-p) : ‘ (3)
where a is the vector of analysis errors at observation points, p is the
vector of first guess errors at the observation points, and d is the vector of

observation errors at the observation points.

Post-multiplying each side of Eq (3) by its transpose and then taking

expectations gives
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where < > denotes expectation, and we have used the fact that

<B-Rt> = gand<g._qt>=2.
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For an O/I system this becomes
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where A represents the covariance matrix of the analysis errors at the

observation points, scaled by the prediction errors.
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The analysié error covariance matrix A contains.all the information needed on
analysis errors at the observation points. This matrix is difficult to
calculate either directly, since the analysis errors are unknown, or through
the analyticél expression (Eg 4). However the off-diagonal elements of A can
be determined from the corresponding elements of the covariance matrix of the
OmA differences, provided the observation errors are uncorrelated.

An expression for the covariance of the difference between the observed and
analysed values can be derived as follows. For any linear analysis algorithm,

it follows from Egq (3) that

and

=(B+D)-(E+D)-H ~H. (B+D)+H. (B+D) W (6a)
For an O/1I analysis, where E=£'(£+2)-1' one finds
t -1
<(8-a)-(d-a)>=D ~(B-E.(B+D)" -B) = D-A (6b)

It is shown in the Appendix that D - A is positive definite.

Eq (6b) implies that the off-diagonal terms of the analysis error covariance
matrix A are given by the corresponding terms of the OmA covariance matrix,
provided the observation error covariance matrix D is diagonal, or
equivalently th;t the observation errors are mutually uncorrelated. This
condition is satisfied for certain important observing systems. Since the
off-diagonal terms of A are therefore readily available for a range of station

separations, it is natural to suppose that the diagonal terms of A can be

estimated by extrapolation of the off-diagonal terms to zero station
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separation, when the matrix D is diagonal. This idea is made explicit for the
0/1 analysis system in section 3.3 (Eg. 20) and is explored for practical

analysis systems in the rest of the paper.

For later discussions of the correlation of observation error and analysis
error in practical analysis systems, it is convenient to derive an expression
for the diagonal terms of the weight matrix of any linear analysis system. If

oné post-multiplies Eg (3) by‘gF, and then takes expectations, one finds that

<a.QF> = W.

|1w]

For uncorrelated observation errors this implies that at each observation

point

(6, /0403 Ryy = Wyy ' (7)

where ca and 0., are the rms values of analysis error and observation error at

d
the point i, (each normalised by the rms prediction error) and Rii is the
correlation coefficient between the observation error at observation point i
and the analysis error at observation point i. Eg (7) says that the weight .
given to an observation in the analysis of the observed variable at the
observation point is proportional to the correlation between observation error
and analysis error at the observation point. Since this correlation is
positive in the theoretical O/I system (see Eg. 18), one expects it to be

positive in a practical system also, so the weights Wii too will be positive,

provided always that the observation errors are uncorrelated.

3. ESTIMATION OF ANALYSIS ERROR AT OBSERVATION POINTS FOR PRACTICAL SYSTEMS

In practice, one cannot use all observational data in a single analysis
calculation for the gldbe, because of the sheer volume of data to be
considered. Moreover one can never have perfect knowledge of the statistical
properties of prediction or observation error. Practical compromises have to
be made in every operational system. The results of Section 2 for an 0O/I
analysis cannot be strictly valid for any working system, but they do offer
certain ideas on how to estimate analysis error in a practical analysis

system.
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In this section we explore the suggestions of the last section for a simple
approach to the problem of estimating analysis error. The main focus is the
spatial correlation structure of the OmA differences. This correlation ‘
provides useful information on the analysis errors, and on the efficiency of
the analysis algorithm, provided one can assume that the obsérvationlerrors
are spatially uncorrelated. The more difficult case of spatially correlated

observation error will be addressed in a later study.

In the calculations presented in the rest of the paper, we discuss analyses of
a set of data which are homogeneously distributed over the area of interest,
with the data beipg of uniform quality. In such a case the weight given to
the local observation in the analysis of the observed variable will also tend
to be homogeneous. In section 3.1 the OmA covariance is separated into
spatially correlated and spatially un-correlated parts. A method is proposed
to extrapolate the spatially correlated part of the OmA covariance to zero
station separation; we shall call the extrapolated value the zero intercept,
or simply the intercept. A simple argument shows that if the intercept is
negative then the analysis fits the data to within observational error (i.e.
is efficient), the analysis system is inefficient if the intercept is

positive.

The rest of the section is- concerned with the question 'how negative should
the intercept be?' in an efficient system. The answer to this question
provides indications of where there is scope for improvement in an efficient
analysis system. In Section 3.2 we derive an equation (Eq 15) which relates
the rms analysis error at the observation points (called simply the analysis
error) to-the intercept, and to the weight used in the anélysis of the
observed value at the observation point (called simply the weight). One can
delineate a rather small area on the weight-intercept plane within which the
weight and intercept of any efficient practical analysis system can be found.
In section 3.3 we show that the weight and intercept for the theoretical O/I
analysis must lie along a line in the weight-intercept plane which roughly
bisects the area in which an efficient practical system must be found. This
suggests that efficient practical systems which lie far from this line have
scope for further improvement, but that systems which 1lie close to this line
probably have little scope for further improvement. In section 3.4 we

interpret the analysis error estimates derived in section 3.2 to provide a
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definition of effective data density. This can indicate if the observations

would support an increase in the resolution of a practical analysis system.

3.1 The spatially correlated component of the OmA differences

Given a homogeneously distributed set of observations of uniform guality, and
the corresponding set of analyses based on them, one can express the spatial
variation of the covariance of the OmA differences as

(xr)

<(a@-a)_,(d=a) > = > 5., -20 (r)+0>.R
i j d ij o a a

4 ca Ra/ /a

where

r is the separation of poihts i and j,

d=observation error at a single point (assumed unbiased and with zero spatial

correlation),

a=analysis error at a single point,
Ra/o(r)=correlation of observation and analysis error,
Ra/a(r)=auto—correlation of analysis errox, and

Gij= Kronecker delta.

The function b(r) defined by

b(r) = =[2.0 a(r)] (8)

2
. - «R
d Ua Ra/o(r)yca Ca/
is the spatially correlated part of the OmA covariance.

’

The OmA covariance is then the sum of the spatially correlated part b(r) and

the spatially uncorrelated part due to the observation error:

<(d=a),,(d=a)_> = 0% §,, + b(r) (9)
i j d ij

The function b{r) is well defined at observation points. We extend the
definition to all values of r in the following way. By analogy with the

methods used to fit the spatial correlations of forecast errors we define the
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function b(r) by finding a truncated series of Bessel functions which provides
a least squares fit to the empirical OmA correlation data at the observation
points and which satisfies conditions of boundedness at infinity and zero
slope at the origin. Clearly, b(r) should tend to zero at large separations
(HL/LH). The truﬁcated series expansion may be extrapolated to the origin to
give an intercept b(0), which provides a key indicator of analysis
performance, for one then has the relation

o> = <(a-a)?> =b(0) s , (10)

2
da
where < > denotes expected value.

One might object that the analogy between OmF and OmA statistics is not good
enough to justify the approach used here. Forecast error covariances are
usually assumed independent of the positions of the current set of
observations. Such an assumption is not likely to be as valid for the
analysis error. If there are enough station pairs within each distance bin
used, then one mey expect that the dependence on observation position will be
averaged enough to product a statistically reliable result. Large volumes of

data are used for our calculations, as shown in section 4.

Eq (10) is the first important result of this paper. If the intercept b(0) is
negative or zero then the analysis system fits the data to within
observational accuracy and is efficient. If b(0) is positive then the

analysis system is inefficient.
Egq (10) also provides a new method of estimating the observation error to be
used in the analysis calculation and is a useful check on the more usual

method using forecast error statistics.

3.2 The weight—-intercept relation for a practical analysis system

In the rest of this section we address the question 'how negative should b(0)
be?'. We derive an important relation Eq (15) between the analysis error, the
weight and the intercept, and use simple arguments to show that an efficient

practical analysis should only operate in a restricted region of the
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weight-intercept plane, so that the analysis error can satisfy certain

bounds.
From Eg (8) one has the relation

2 _ ’ ‘
ca - 2.ca cd.R a(0) = b(0) = 0. (11)

o/
which is the analogue of Eq (6b) for a practical analysis system. The second
texrm in Egq (11) has a close relation to the average weight §iven to the

observations as may be seen from Eq (7). A simpler derivation of Eq (7) is as

follows:

Suppose the observing network is fixed and the analysis algorithm is linear
with fixed parameters, so that the weight given to an observation in the
analysis of any variable at any point is also fixed. Let w denote the weight
given to the collocated observation in the analysis of the observed quantity
at a typical observation point. Then the analysis error, a, at the

observation point is given by
a =w . d+ other terms

where d is the observation error at the point. Multiplying by d and taking

expectations it follows that
<a.d> = w <d.a ; (12)

if all observation errors are uncorrelated. Since the left hand side of
Eq (12) may be rewritten as

<a.d>= 0 0_.R
a (o]

/a(O),

a

and the right hand side of Eq (12) may be rewritten as

2
w . <d.d> = w .Ud P



Eq (12) may be recast as

o)
a
W= = Rb/a (0) (13)
a .
which is equivalent to Eq (7). This demonstrates the close relation between

the second term of Eq (11) and the weight.

Using the assumption that the observing network is homogeneous, and that the
data are of uniform quality, the weight given to an observation in the
analysis of the observed variable at the observation point will tend to be
homogeneous. It folloﬁs from Eqs (11) to (13) that the average analysis error
at the observation points can be estimated if the'éverage weight w and the

intercept b(0) are known.

As noted in the discussion of Eg (7), the correlation Ro/a(O) should be
positive in a linear analysis, and so one expects that the weight w should be
positive in a linear analysis. To see the implications of Eg (11) it is

convenient to rewrite the equation in simpler notation in the form

[s) o
-2 - 23R+ B (14)
%3 %

where R=Ro a(0) and B=b(0)/(c§). Using Eq (13) this may be rewritten as

/

o 2
(-0—"5‘-) = 2.w + B. (15)
a

Eq (15) is the second important result of this paper and implies that isolines

of ca/crd are straight lines in the w-B plane.

The solutions of Eq (14) may be written in the form

o /o =R E (R + )} (16)

Substituting for w from Eq (13), Eq (16) becomes

3

w==R>tR (R° + B) (17)
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Eq (17) implies that isolines of R are parabolas in the w-B plane. Fig 1
shows isolines of oa/od and R as functions of w and B; the isolines of oa/cd
are straight lines, while the isolines of R form a family of parabolas which
are tangent to each other at the origin. The correlation.R maust lie in the
Vrangem[-1, 1], SO the 1sollnes of the correlatlon are only drawn for values in
this range. The branch of the solutlon is chosen so that w and R have the

same sign, as required by Eq (13) since 04 and 0 are positive.

i = I

In pr1n01ple therefore one mlght expect an analy51s system to operate w1th1n
the area on the w-B plane bounded by the analy51s error isoline

_}(c /0 ) : 1 = 2w+B ; and the parabollc isolines glven by R—1 and R=-1. kThe
zfollow1n§ argnments show that an efflclent practlcal analy51s system should

operate in a very much smaller area of the w-B plane.

(1) w 2051t1ve

As discussed already, the weight given to an.observation in the analysis of .
the observed variable .at the observation point. should be positive, so the

analysis system should operate. in the right half of the w-B plane.

(id) B negative

We have defined an efficient analysis system as one which fits the data to
within observational error. For an efficient analysis system Eq (10) implies

that the intercept B should be negative.

If only one observation is present, and the ratio of observation error to
background error.is known accurately, Eq (4) shows that, for a practical
system, the analysis error at the observation point is given by

B

The availability of additional observations ought to reduce the analysis

error. The analysis system should therefore operate in the lower right
. O'az 2
guadrant of the w-B plane, below the line (Erd = 1/(1+Gd)-
d
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(iv) Upper bound on correlation implies lower bound on analysis error

Again, if only one observation is present and the ratio of observation error
to background error is known accurately, Eq (13) shows that for a practical
system the correlation between analysis and observation error at the

observation point is given by

Q

1
R:i:
g

2.3
4 (1+ od)

The availability of additional observations would reduce the correlation
between analysis error and the error of any one observation. The value
Rmax=1/(1+cé)% therefore provides an upper bound for R. The corresponding
parabolic isoline on the w-B plane is a lower bound to the area of the plane
where a practical gnalysis system may be expected to operate. Combining this
result with the conclusion of item (iii) above implies that for fixed values

of 04 and B the following bounds are valid for ca/od:

3 1 3 % 1 3
57 = >+ B)" < < ( =) (18)

. o
+ + +
1 od _ 1 Ud d 1 Ud

0 < (

To illustrate these bounds, Fig 2 shows the region of the w-B plane (hatched)
which satisfy the bpunds for tWo values of 04t od=1 in Fig 2a and 0d=0;5 in
Fig 2b. In both figures the region where one expects an effective analysis
system to operate is considerably smaller than the area outlined in Fig 1.
Note too that the range of permissible weights depends strongly on the

accuracy of the observations.

3.3 The weight=intercept relation for an O/Ikanalysis system

Consider now the weight-intercept relation for a theoretical O/I system. For

such a system we know from Eq (6b) that for any two points i and j,
2 N
<(d-a),,(d-a).> = o_ 6§, . -0 R (r)
i 3 d

ij a a/a.

while we have just seen that for any linear analysis system
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2 : 2
<{d-a a- > -2 . +0. .
( ). ,( a), o4 o3 %4 Ra/o(r) o, Ra/a(r)
These two relations can.only be compatible at zero separation. if in the

theoretical O/I system R(=R (0));satisfies

o/a

oa
R=-2, (19)
d : :

a result which is due to the optimal choice of weights. For the O/I system

Egq (14) then takes the simple form

Uv 2 e .
GH o =-m ~ o

o[

while Eq (13) implies
w=-B8 S ' (21)
in an 0/1I system.-

Eq (20) implies that for an O/I analysis the intercept -B determines the rms
ahalYSis error at observation}points, as expected from the discussion of
Section 2. It also fellows that as more datakis ptevided to an optimal
system, the welght—lntercept relatlon for the system should trace out the
straight line w=-B, w1th the normallsed 1ntercept B tendlng to zero. This
line is 1nd1cated on Flgs 1 and 2a,b. We note that the llne along whichkthe
theoretical O/I analysis must operate roughly blsects the area within which an
efficient practical analysis system should operate. This implies that the
theoretical analysis is efficient, a result which is proved directly in

Eq (A.5) of the Apbendix}

Eq (21) suggests a check of the performance of a ptacticel analysis system
through a form of back-substitution. The (a=-priori) weight w used in the
practical analysis is known, whlle the (a-posteriori) weight —B can be
calculated from the Oma statistics. Equallty of the a-prlorl and a-posteriori
weights is guaranteed for the theoretlcal 0/I analysis. Since the statlstlcs

and data selection used in a practical analysis calculation will normally have
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Fig 1

R= -0.5 e\
R= -0.25 \
\ \
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\
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L\ R
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1.0

Isolines (solid) of the correlation R defined in the text (for ~-1<R<1,
in steps of 0.25), and isolines (dashed) of Oa/co (in the range 0 to. 1
in steps of 0.2), plotted as functions of the weight w (horizontal

axis), and the normalised intercept ‘B (vertical axis).
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1.0 - R

Fig 2a The shadiné denotes ' the ;réa;éf thé w-B piane where,an efficient
analysis system may be expected to operate if the normalised

observation error is 1. The solid line denotes the upper bound of the
correlation R, and the dashed lines indicate isolines -of analysis

error, and are labelled 1,2,3, etc, according to the corresponding
effective data density, '‘as discussed in the text.
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Fig 2b -As Fig 2a when the normalised observation error is 0.5.
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limitations, one cannot expect that any practical system will satisfy w = =B,
but it should approximately satisfy this relation. If an analysis system is
efficient, it is reasonable to suppose that a large difference between w and
=B is an indication that there is considerable scope for improvement.
Approximate equality of w and ~-B for a practical system suggests that there is

little scope for further improvement.

3.4 An estimate of the effective data density

The precise point along the w=-B line where a theoretical O/I analysis will be
found depends on the analysis error, and therefore on the accurac¢y of the
firét-guess, on the accuracy of the observations, and on the effective data
density. Similarly, the precise point within the permissible range where one
will find the B and w parameters for an efficient practical apalysis system
will depend on the formulation of the algorithm, on the accuracy of the
first-guess, on the accuracy of the observations, and on the effective data

density. Quantification of the effective data density is our next topic.

The isolines of o, on the w-B plane provide a method to estimate the effective

data density, if w, o, and B are known for a given analysis system. The

d
estimate is derived by calculating how many co-incident observations of the
same quality would be needed at an isolated observation point to give the same
analyéis error at the point.

Suppose that N observations of uniform rms error o_, are coincident, that the

d
observation errors are uncorrelated, and that all the coincident observations
are used in an O/I analysis. It can be shown rigorously that the 0/I
algorithm has the effect of averaging the observations into a

'super—observatien' (Lorenc, 1981) with corresponding rms observation error oy

given by
2 2
o, = cd/N .

If the coincident observations are the only ones available, the analysis error

for the observed variable at the observation point is given by

o = o2/(1+ o°)
a s S
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a? _ | | : o
(o) = : o ; . (22)

Knowing w and B for a practical analysis system, one can deduce oa/dd from
Eq (15), and so one can solve Eq (22) for N, which we define as the effective
data density. It is the number of coincident observations one would need to

have at an 1solated p01nt to achieve the ~same level of analy51s error at the
G 2
isolated point. '~ On Figures 2a,b we have drawn the isolines (;—ﬂ = ep— for
d N+ ¢

N=1,2,3, and labelled them accordingly. This gives us a convenient set of

nomograms to estimate the effective data density.

A high effective data density in a practical,analysis system has implications
for the resolutioﬁ of the analysis system. In the theoretical 0/1 system,
observational error is defined to include the sampling error due to unresolved
scales. In some practical analysis systems (e.g. the ECMWF system) the
spectral representation of the prediction error auto-correlatiens is truncated
relatlve to empirical determinations of the OmF correlations. If the
spec1f1ed spectra of the prediction error auto—correlatlons are w1dened to
resolve finer structure, (so that the length scales of the prediction error
auto-correlations are reduced relative to the observation spacing), then the
observation error must be correspondingly reduced. Higher resolution analyses
-will then be generated, and the iﬁplicit data redundancy will be reduced. An

example for the North American network is discussed in the next section.

3.5. Discussion

In the last two sections we have considered the estimation of rms enalysis
error at observation points for both theoretical and practical analysis(
systems. For any efficient analysis system, the spatial correlation of the
observation minus analysis differences should be negative at short separations
and zero at large separations. The extrapolated value of the correlation at
zero separation then provides an estimate of the observation error, Eq (10),

and bounds on the analysis error Eq (18). Use of the normalised intercept B
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in conjunction with the average weight w provides an estimate of the analysis

error at the observation point Eq (15).

For any analysis system, the occurrence of a positive intercept in the OmA
extrapolation implies that the analysis algorithm does not extract all

available information from the observations.

For a theoretical O/I analysis system, the normalised intercept B is
proportional to the analysis error at the observation points Eq (20), and to
the weight given to the observation in the analysis of the observed variable
at the observation point Eq (21). For a practical analysis system, comparison
of the normalised intercept B with the weight actually used provides a

valuable check on how much scope is available for improving the system.

The normalised intercept also provides an estimate of the effective data
density at each observation point. If this is substantially larger than one,
then it means there is a possibility of reducing the apparent redundancy in
the observations by incréasing the resolution of the practical analysis

system.

Care must be taken not to push the interpretation of the estimates of the
analysis error too far. The calculation of the intercept b(0) is based on
data at observation points, .and so the eétimates ONLY APPLY AT OBSERVATION
POINTS. The estimates say nothing about the behaviour of the analysis error
between observation points, where one expects an increase of analysis error to
the level of the first guess error (roughly at the rate of the variation with
distance of the square of the first guess error correlation). However, an
analysis which is bad at the observation points will probably be bad between

the observation points.

The above results apply to the spatial correlation of the OmA differences for
a scalar quantity. The essential condition for the validity of Egs (10), (11)
was that observation error for adjacent stations be spatially uncorrelated.
This is generally true for height observations in the horizontal, but not in
the vertical (LH 1986). Since rawinsonde observational errors are'independent
for each wind component in the horizontal and in the vertical (HL 1986) and

since the prediction errors for u and v are also uncorrelated at zero
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sepatétion/ it follows that the above arguments apply to the vector wind
correlation <u,u>+<v,v>. For isotropic forecast errors the vector wind
correlation is isotropic, even though the component correlations <u,u>, <v,v>

are anisotropic.

4. DIAGNOSIS OF THE ECMWF ANALYSIS IN MID TROPOSPHERE OVER NORTH AMERICA

In this section we use the results of section 3 to test the performance of the
ECMWF analysis system inmid-troposphere .over North America; we show that the
wind’anaIYSes~ére~quite“good;there. Diagnostic results near the tropopause

(Section 5) indicatée- that the analyses can be markedly improved in that region

of large vertical shears.

4.1 The data’

The data used in the study comprise North American data for 1200 GMT
rawinsondes; for tﬁe corresponding anélyses, and for the 6-hour forecasts used
as background for the analyses, for a three month period from 1 December 1986
to 28 February 1987. Only observational‘data accepted and used by the
analySis are considered in the calculations. For the correlation
calculations, a minimum of 60 pairs of reports was required before a station
pair was used. The correlations for station pairs were composited in 100 km

bins and avéraged'using*the Fisher z=-transform before being plotted.

Asﬂbackgroﬁhd'for the discussion, it is convenient to note the estimates of
first guéss“efror'and~observation error determined from the observation minus
'first-quess (OmF) differences for the period of interest, Dec 1986 to Feb
7ﬁ987; for the North ‘American rawinsondes. The methodology is discussed in
HL/LH who showed results for the North American network for Jan=-March 1983.
Hbilingsworth;et'al'(1986) showed similar results for Jan-March 1984.

Fig 3a,b shows the estimated observation and first4guess errors for height and
wind, estimated from the 1986/87 data. For the heights the forecast errors
‘are=2—3'm'ibwer than those in HL/LH, while for the winds the forecast errors

are about 1.5 m/s lower at the maximum near the tropopause.

Also shown on these plots .are the vertical profiles of the rms OmA difference
for height and wind. Since the rms observation errors and rms OmA differences
weté estimated from different data sources (OmF in one case and OmA in the

other), it'is encouraging that the OmA statistics show lower values than the
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Fig 3 a) The height observation error (solid) and height forecast error
(dotted), both estimated from the Observation minus 6~hour Forecast
(OmF) statistics for North American radiosondes for Dec 1986 to Feb
1987. The dashed line shows the rms Observation minus Analysis (Oma)
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Fig 3 D) As a) for the wind statistics.

239



estimated observation errors, indicating that the anélysis system is drawing
slightly tighter to the data than the observation error, as it should. The
main exceptions are the mass and wind analyses at 1000 and 850 mb, and the
winds at 250, 150, 70, and 50 mb. As we shall see in Section 5, there are

deficiencies in the analyses near the tropopause.

4.2 The weights and the intercepts for the 500mb wind field

Fig 4 shows the spatial correlation for the 500mb OmA statistics for the 500mb
wind field. The number plotted beside each data point tells how many station
pairs were used to generate the data point. For convenience the plots are

normalised by the OmA covariance at zero separation.

For separations larger than 600km the correlation is essentially zero.
Discounting the single pair of stations with smallest separation, the data
between 250 and 600km suggest that the intercept would be about =0.25, giving
a normalised B value of about =0.20., The rms value of the OmA differences for
the vector wind is 3.95m/s, so the estimated observation error is 4.4 m/s
based on the OmA statistics, and compares well with the value of 4.7 m/s
determined from the OmF statistics in Fig 3. The intercept b would need to be

b(O)/og ==(.41/1.41)=—-.29) for the

!

-.,41 {(with a normalised value of B

estimate from the OmA statistics to reach 4.7 m/s.

If the ECMWF analysis system behaved like the theoretical 0/I system then the
weight given to each of the wind components would be 0.2, based on the OmA
statistics. The weights given to the zonal wind component at 500mb in a
typical analysis of the 500mb wind field are shown in Fig 5. Over the areas
with dense coverage the weight varies between 0.20 and 0.30, with values as
large as 0.43 at isolated stations. The average value of the weights shown in
Fig 5 is. 0.275, which is in fair agreement with the value expected from the
intercept: 0.20. The fact that the operational analysis system specifies a
weak vertical correlation (0.18 between 700 and 500mb, and 0.34 between 500
and 400mb) for rawinsonde wind observation error may contribute to the
differences between the average weight used (0.275) and the weight estimated

from the intercept (0.20).

Assuming that the value for the weight in an 0/1 analysis of these data would

lie between the two estimates from the practical analysis (say 0.25), and that
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The dependence on station separation of the auto-correlation of the
1986/87 OmA North American differences for the 500mb vector wind. The
numbers of station pairs contributing to each distance bin is
indicated.

Since the wind observation errors have little spatial correlation,
this auto-correlation should be zero for large separations and
negative for short separations; the extrapolated value at zero
separation (with sign changed) should equal the average of the weights
shown in Fig 5. ; S
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The weight given to the 500mb u-component observation in the analysis
of that observation at the station, for a typical 12% analysis in
1986/87.

The average of these weights may be compared with the estimate
derived by extrapolating the data of Fig 4 to zero separation.
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the square of the ratio of 500mb wind observation error to forecast error is
1.5 (Fig 3) then the methods of section 3.5 suggest that the effective data
dénsity is 1.75; This implicit data redundancy suggests that a higher
resolution practical wind analysis is possible, following the arguments in

section 3.5.

4.3 The weights and the intercept for the 500mb height field

The results of section 3 are applicable only if the observation error at a
given point is uncorrelated with the observation error at all other points
affecting the analysis for that point. Rawinsonde errors for wind are
uncorrelated in the horizontal,band have a very weak correlation in the
vertical as shown by HL. However rawinsonde reports for height have a marked
vertical correlation (LH 1986) while the thickness reports have very little
vertical correlation. In the current ECMWF system the vertical correlation of
sonde height error at 500mb with 400mb is specified to be 0.67, and for 500mb
with 700mb is specified to be 0.57. One should not expect then to find as
good correspondence between the weights and intercept for the height field as

was found for the wind field atiSOOmb.

Fig 6 shows the dependence on spatial separation of the OmA correlation for
the 500mb height field, while Fig 7 shows the distribution of the weights in a
single typical analysis. A visual extrapolation of the data in Fig 6 gives an
intercept of about -0.2 and a normalised intercept of =0.18. 1If the
observatioh errors were uncorrelated, the weights on Fig 7 would be expected
to be abou£ 0.18. In fact they are much larger, and typically lie between 0.5

and 0.7. This must be attributable to the correlated observation errors.

4.4 Discussion

The results just presented indicate that the wind-field analyses in
mid-troposphere over North America must be quite good. The presence of
important observational error correlations makes it more difficult to comment
on the analysis of the mass field. These results demonstrate the value of
quantitative application of the results of sections 2 and 3. 1In the next
section we demonstrate that the results of these sections are also of value

even if only used Qualitatively.
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correlation data in Fig 6 because of the vertical correlation of
height observation error.
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S. DIAGNOSIS OF THE ECMWF ANALYSIS NEAR THE TROPOPAUSE OVER NORTH AMERICA

The demonstratiqn in the last section that the wind analyses are quite good in
mid-troposphere over North America required that the OmA correlations should
have the correct gualitative behaviour (being negative near the origin and
zero at large separation), and they should also have the correct quantitative
behaviour, with approximate agreement between the normalised extrapolated
intercept and the weight. In this section we use the methods of section 3 to
demonstrate, by qualitative arguments, that the analyses of wind and more
especially of thickness are inefficient near the tropopause. These results
are of practical importance since a good analysis of strongly baroclinic

structure is critical for forecast success (Hollingsworth et:al, 1985)}

5.1 The analysis of the thickness field near the tropopause

Fig 8 shows the dependence on station separation of the spatial correlation of
the OmA differénces for the thickness of the 250-200mb layer. The result for
the pair of stations with shdrtest separation ‘does not always agree with the
findings for the other stations; and so thebresults for this station pair may
be discounted. Both for this layer, and the 300~250mb and 200-150mb layers
(not shown) the extrapolated intercept is poSitive and of order 0.3 or more.
For thicker layers such as the 300-200 mb layer (not shown) the‘extrapolated
intercept is still positive, bﬁt much closer to zero. Theée results imply
that the analyses of the thickness of the thin layers near the tropopause is
inefficient, since all the intercepts should be negative. The same is true,

but to a lesser degree, even for thicker layers such as the 300-200mb layer.

This situation probably arises because the forecast error correlation is
specified to be too high in the vertical. Suppose the analysis equations for

analysis increments a4r @, at adjacent levels in the vertical are written

a1=A.d1+u.d2+...= Al (d+)+(d_)]+a[ (d+)-(d-)]+... other terms

a,~B.d +B.d +...= Bl @ H)+a )+l (at)-(a”)1+... other terms

where a1, a are the analysed departures from.the'first guess, d1, d2 are the

2'
: RN o :
observational departures from the first guess, d is the vertical average of

d1 and d2, and & is (d1--d2)/2° If these eguations are differenced, we find
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. Fig 8 The dependence on station separation of the auto-correlation of the
1986/87 North American OmA differences for the 250 to 200mb
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Since the thickness observation errors have little spatial
correlation, this auto-correlation should be zero at large
separations, and negative at short separations (500km or less).
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Since the wind shear observation errors have little spatial
correlation, this auto-correlation should be zero at large
separations, and negative at short separations (500km or less).
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that
+ -
a1-a2=[A-B,+(a-B)] «(da) + [A+B =(a+B)] . (4 )
One may expect that A~B and o~B so the response to the vertical difference in

the data is, to a first approximation,

a_ ~a.= [A+B =(a+B)] .(d )

There will therefore be a poor response to the vertical difference in the data
‘if the first-guess error correlations, represented by the term (a+B) in the

last expression,  are too large.

A further contributory factor to the inefficient performance of the analysis
system must be the WMO reporting practice which rounds all reported heights to
10m above 500mb. As ﬁoted by LH, the rounding error in the thickness then has
"a triangular distribution with an rms value of 4m. For the 250-200mb layer
the rms of the OmA thickness differences illustrated in Fig 8 is 8m,
corresponding to an rms OmA difference of 1.2K, while the rounding error in

the observation is 0.6K.

5.2 The wind shear field near the tropopause

Fig 9 shows results,similar to Fig 8 for the spatial dependence of the OmA
auto-correlations for the vector wind shear over the 250-200 mb layer. The
results for the exceptional pair of stations with shortest separation may
again be discounted. Both for this layer and the 300-250mb and 200-150mb
layers (not shown) the extrapolated intercept is positive with values between
0.1 and 0.2. The rms vector wind shear in the OmA differences for the
250-200mb layer illustrated is 6.3m/s, with similar values for the 300-250mb
and 200-150mb layers. This compares with an estimated observation error of
5.8 m/s for the vector wind shear across the 250-200mb layer, with similar
values for the 300-250mb and 200-150mb layers. The wind shear analyses for

these thin layers are inefficient.

For thicker layers, such as the 300-200mb layer, the extrapolated intercepts
for the vector wind shears are smaller, but still positive. The extrapolated
intercepts for the wind analyses at 300, 250, and 200mb (not shown) are

essentially zero.
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All these results indicate that the wind shear analyses near the tropopause
are inefficient, but perhaps not as seriously so as the thickness analyses.
Taken with the thickness results, one may conclude that improved analysis
resolution is needed in the vertical near the tropopause. The need for
improved vertical resolution may also imply a need for better horizontal
resolution in order to maintain dynamical balance. The earlier discussion of

the effective data density for wind at 500mb points in the same direction.

To see some of the history of the problem, we compare the 1986/87 analysis
quality for the wind shear in the 250-200mb layer with that for Jan-March
1984, as shown in Fig 10. The comparison shows that there was a considerable
improvement in the analysis of the wind shear over the intervening period.
This was_maiﬁly due to a set of changes to the analysis algorithm in mid 1984
(Shaw et al, 1987) which were designed, inter alia, to improve the vertical

resolution of the élgorithm.

5.3 Geostrophic and thermal wind balance

The results above indicate that the thickness analysis and the wind analysis
are inefficient near the tropopause. We may therefore expect the thermal wind
analysis to be inefficient. To explore this gquestion we discuss the <t,z>
correlation for the OmA differences, where z is the height at one of a pair of
stations and t is the velocity component transverse to the line between the
stations; measured at the other station. HL/LH showed that the
height/streamfunction correlation of forecast errors can be diagnosed from
simple calculations based on the <t,z> correlation. Simple arguments may be

used to put bounds on the OmA <t,z> covariance in an 0/1 system.

a) The <t,z> ecorrelation for OmA differences_in_an_O/I analysis

Consider an O/I analysis involving at least two observations, one of height at
station 1, and one of transverse wind at station 2. The O/I analysis
equations for the analysed values of the observed variables at the observation

points are

AP = (£%=tP) + w_ . (29-ZP) +..... m
t2 t2 1 (1:2 tz) 5 (z1 z1) other terms
a_.p _ . o_p o_.Py 4 e

z1 z1 w3.(z1 z1) + w4.(t2 t2) «sses0ther ter@s
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Note the improvement in analysis quality between 1983 and 1986/87.
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248



a
0! tg are the observed, analysed, and predicted values of t, at

point 2 normalised by the rms first guess error for wind; z?, z?, z? are

where to, t
2
defined similarly.

Suppose that only these two observations are used in the O/I analysis

calculation. Then with

1, w o 0
P = p= 2
U . £

the entry A12 in the analysis error covariance matrix is easily calculated

from Eq (5), and =A gives the <t,z> covariance for the OmA'differences,

12
provided height and wind observation errors are uncorrelated. The calculation

gives
-y 02 02
<(z0—za),(t°—ta)> = t z
171 2 72 [02+02+02 02+1_ 2]
g0, Tg 0T TN
where ¢ o, are the (normalised) observation errors for wind component and

£’ :
height, and yu is the <t,z> correlation for forecast error for that pair of
stations. As shown by HL/LH u is a positive function of station separation.

It has a maximum value of about 0.45 at about 400km in the ECMWF system and

tends to zero as the separation tends to zero or to infinity.

As more data is made available to the system, one expects the (positive)

L . a a K
analysis error covariance <z1, t2> to decrease to zero, and so one expects its

negative, the OmA covariance, to increase towards zero. Thus when more than

two observations are used, one expects that

-y 02 02 -u 02 02
‘ ) £’
<(z?-z?),(t§-t;)> > L > = (23)
2 2 2 2 2 2 2 .2 2 )
+g +oo. + 1= +g +ag .
[ot 0,10, .0, ‘1 ul [ot o,t0, o£
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and so one has the bounds

o oo
0 >  <«(z2-z%,(t%t%)> > t z (24)
1729711578,
[02 02+02 ]
. z 0t Oz

g,_ 0

The function G(cz,ot) = 5 is plotted in Fig 11 for the range
(ct+0 +0, .0, )

N Nt N

2
Z
2 2
t
(0.,2.) in each of the arguments, whlch covers the typical range of variation
of the normalised observation errors. The isolines of G are hyperbolic in
character. A convenient upper bound for G within this range is obtained by
setting the larger of the two arguments to 2., so that
g2
G(cz,ct) L —5 = glo)
(1+1.25.07)
where o is the lesser of the two arguments. The function g(o) takes the

values 0.19 when 0=0.5, 0.44 when o=1, 0.61 when ¢=1.5 and 0.66 when o=2.

b) Geostrophic_wind balance_at_a SLngle level in the ECMWF_system

We now assume that the above bounds are relevant to results from a practical
analysis system, for which c . o£ and p are known with a reasonable degree of
confldence. Calculat;ons of the <t,z> correlation for the OmA differences at
the 250, and 200 mb levels are shown in Fig 12a,b. At both levels the <t,z>
correlation is negative at separations between 250 ahd 750km, and is almost
zeso beyond that distance. The minimum values on the plots are of order 0.1,
the results being normalised‘by the OmA differences for z and t at the origin.
From Fig 3 the values of o, and C at 250mb are 0.65 and 0.92 respectively,
while the corresponding values at 200mb are .83 for o, and 1.25 fer Ope From
Fig 11, one should expect the OmA <t,z> cross—correlation at 250mb to be
bounded below by =-.25 u, so that the minimum value should be about -.1 at
about 400km. This is quite close to the empirical result on Fig 12a. At
200mb one expects the OmA <t,z> correlation to be bounded below by ~0.32 y,
with a minimum value of about =-.12. The empirical data satisfy this bound.

We can therefore conclude that the single-level <t,z> correlations are within

the expected bounds at both 250 and 200 mb.

c) Thermal wind balance in_the ECMWE system

Fig 13 shows a similar calculation for the OmA cross~correlation <At,Az> of
the wind shear (more correctly, the vertical wind difference) and the
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Fig 12a The dependence on station separation of the cross—correlation of the
1986/87 North American OmA differences for the transverse wind and
height at.250mb.

If the mass and wind analyses at this level are in balance, the
cross—correlation should be zero at large separations and at zero
separation; at separations of order 500km it should be negative, but
larger than about -0.15.
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Fig 13 The dependence on station separation of the cross-correlation of the

1986/87 North American OmA differences for the transverse wind
differences between 250 and 200mb and the height differences between
200 and 250mb.

If the thickness analysis and wind shear analyses for this layer are
in balance, the cross—correlation should be zero at large separations
and at zero separation; at separations of order 500km it should be
negative, but larger than -0.15.
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ﬁig 14 BAs Fig 6 for the 500mb height OmI differences. The difference between
this and Fig 6 indicates data rejection by initialisation. A similar
effect is seen at many other levels.
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thickness across the 250-200mb layer. The OmA <At,Az> correlation for this
layer is zero for large separatioﬁé, and small separations, but tends to be
positive at separatiohs between 750 and 1500km. This last result gives causé
for concern:as it suggests that there is fhermal wind information in the
observations which has not been used by the analysis, implying that the.
thermal wind analysis is inefficient for this layer. The results in Figs 8 .
and 9 already indicate that both the wind analysis and the thickness analysis

are inefficient, and so lend support to the interpretation of Fig 13.

The results df‘HL/LH and Phillips (1986) show evidence of the need for
ndn-separablé structﬁre functions to properly resolve the vertical wind shear
and its associated mass field. Non-separable structure functions have yet to
be implemented in our operaﬁional system. The present results show the need
to improve the analysis of baroclinic structures near the tropoéause in

mid-latitudes.

4d) The effect of initialisation on the OmA differences_in_the

All the empirical‘results discussed so far have been based on observation
minus uninitialised analysis (OmA) data. To Study the effect of
initialisation we have made the same calculations for the observation minus
initialised analysis (OmI)‘data. Initialisation has very 1i£tle effect on
the wind, thickness, wind-height or wind shear = thickness statistibs; the OmA
and OmI results for these quantities are almost identical. Initialisation
does have a marked effect, ﬁowever, on the height field statistics. Fig 14

- shows the OmI results for the 500mb height field, which may be cbmpared with
the corresponding OmA results in Fig 6. The initialisation rejects certain
mass.informatidn on large scales. A similar effect is seen at many other
levels suggesﬁing that the rejected information probably haé a brbadbvertical

scale.
At present we can only speculate on the reasons for the occurrence of the

unbalanced large scale mass information. At least two possibilities may be

mentioned. The,effect could arise from inconsistencies between the analyses
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over land and ocean, each with its characteristic type of data coverage.
Secondly the large horizontal and vertical scales involved might also suggest
a tidal origin for the rejection. Modifications were made to the systém

in early 1986 (Wergen, 1986) to improve the retention of tidal structures.
The modifications were a distinct improvement on the previous treatment, but

may still have limitations.

6. DIAGNOSIS OF THE ECMWF ANALYSIS SYSTEM IN THE TROPICS

Operational data assimilation, and forecasting, are more difficult in the
tropics than in the mid-latitudes of the Northern Hemisphere. The main
reasons are the paucity of data, the weak coupling between mass and wind
fields, the difficulty of parameterising the convection process for large
scale models, and the difficulty of analysing the moisture and stability
fields. Despite these difficulties prbgress has been made in recent years;
oéerational analysés and 2 to 3 day forecasts are skilful in some areas of the
tropics (Reed et al 1988). Given the paucity of observational data in the

tropics,it is essential that it be fully used.

We now apply the methods discussed in earlier sections to verify the
background fields and analyses of wind and wind shear in the upper tropical
troposphere. In the earlier sections we used plots with station separations
up to 3000km té discuss the OmA correlations over North America. For the
tropical verifications we extend the plots to 10,000km (taking account of
spherical geometry in the calculations) in order to find if there is

observational evidence for analysis or forecast problems on large scales.

6.1 Analysis on large scales

The issue of analysis problems on large scales in the tropics was discussed by
Cats and Wergen (1982) and by Daley, Cats and Wergen (1986). These authors
used the 1982 version of the ECMWF analysis system to analysellarge scale
Rossby and Kelvin modes, when the data input was provided by simulated
radiosondes on a reqular grid. They found, inter alia, that the analysis
system responded poorly to wind information on very large horizontal scales in
the tropics, and that there was poor discrimination between‘very large scale
Rossby and Kelvin modes, because of the difficulty of prescribing a
satisfactory mass-wind relation in the tropics. The horizontal structure

function used for mass and stream-function in their experiments was a gaussian
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(negative squared equnential) and the wind law in the tropics was a simple
intérpolation between simple geostrophic laws for the northern and southern

hemispheres.

Hollingsworth énd LBﬁnbe:g (1986) pointed out that a more general formulation
of the correlation model used for analysis will permit the representation of
forecast errors on very large scales. Such a representation has been
incorporated in the correlation models at ECMWF since early 1985. This was

- expected to have a beneficial effect on the analyses of height and wind on
large scales, but was ndt.expected to have any effect on the problem of

discriminating between Réssby and Kelvin modes.

6.2 The wind and wind shear fields

a)  sShort_range_ forecast_ errors

Since little has been published on observational verification of short range
tropical forecasts, aﬂd since such vérificatious provide a useful background
for a discussion of the analysis verification, Fig 15a shows the spatial
correlation of the 150mb vector wind forecast errors based on regularly
received radiosonde data from 20N to 20S during Dec 1986 through Feb 1987.

Fig 15b shows the corresponding results for the spatial correlations of vector
wind-shear error between the 200mb and 150mb levels. These levels were chosen
to be near the level of maximum shear in the outflow of the Hadley

circulation.

In the 150mb wind field forecast error correlation, the main feature is a peak
at short separations, indicating that mdst of the forecast error is on
synoptic scales. There is little evidence in these results of a marked
forecast error oﬂ‘iarge scales. The fluctuations in the statistics between
2000 and 10,000km are as likely to be noise as anything else. The magnitude
of the perceived rms vector forecast error is 8.1 m/s. If the OmF data are
extrapolated to the origin, then they might give an intercept as large as 0.7,
implying that the rms forecast error is at most 6.8m/s and the rms vector

observation error is at least 4.5m/s. The observation error estimated in this

way corresponds reasonably well with the estimate for mid-latitudes on Fig 3.
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The main feature of the OmF correlation for the 200-150 mb vector wind shear
(Fig 15b) is a peak at small separation, rather similar to that in the 150mb
wind correlations. Again there is little evidence of a large scale forecast
error, and most of the forecast error in the wind shear is on synoptic scales.
The perceived forecast error in the vector wind shear is 9.3 m/s. If the OmF
data are extrapolated to the origin, then they might give an intercept as
large as 0.6, implying that the rms forecast error for the shear is at most
7.2m/s and the rms vector observation error is at least 5.9 m/s. If sonde
wind errors are indeed uncorrelated in the vertical then the latter result
would imply a vector wind error at a single level of 4.2m/s in good agreement

with the estimate from the single level data.

b) Verification of analysed winds_and wind shears

The dependence on station separation of the OmA correlations for the tropical
150mb vector wind are shown in Fig 16a. Most of the stations with separations
less than 1500km show negative OmA vector wind correlations on average,
indicating that the analysis is rather good. Because the results are noisy it
is not possible to make a sensible comparison between the weights and the

extrapolated value of the OmA correlation at zero separation.

The corresponding OmA results for the wind shear between 200mb and 150mb are
shown in Fig 16b. The results again are somewhat noisy. Near the origin
one's impression is that the extrapolated intercept must be very close to
zero. This indicates that the analyses.for the shear are border-line in
efficiency. Nevertheless, compared with the mid-latitude resulté, moré
account is taken of the observed wind shear data in the tropics.than over
North America. This is presumably due to the much sharper structure functions

used in the vertical in the tropics (Shaw et al., 1987)

Part of the tropical/extraﬁropical difference in analysis performance for wind
shear may be attributable to variations in model resolution near the
tropopause, where the model levels are at about 102, 142, 191, 252 and 324 mb
(for a surface pressure of 1000 mb). The analysis is evaluated multivariately
on the model levels and then interpolated univariately to standard levels

(100, 150, 200, 250 and 300 mb) for the verifications discussed here. Lorenc
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Fig 16

Fig 16 b) As a) for the 200mb~150mb wind difference.
on short scales seem quite reasonable.
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(1986) has emphasised the need to take explicit account of such interpolations

in formulating an optimal system.-

7. SUMMARY AND DISCUSSION -

We have preéented new(diaéhostics for evaluating the performance of a
practical objective analysis system, based on the spatial correlation
structure of the pbseryétion—minﬁs-analysis differences. Based on the spatial
coherence of the fit tb observations, the diagnostics provide answers to such

questions as:

* . Are the observations ﬁsed effectively?;
* Are the analyses balanced?

* What is the effective data density?

The horizontal spatial correlation of the OmF differences indicates the
presence of information in the observations, énd the corresponding lack of
that information in the forecast, provided the observatioﬁ errors are
uncorrelated. The analysis algorithm should extract the information from the

observations.

The properties of the spatial correlations of the OmA differences are examined
for a theoretical optimal-interpolation analysis and for a practical linear
analysis system. The results are used to interpret the empirical
determinations of the OmA correlations in the ECMWF system, for data with
uncorrelated errors. For short separations the correlations of the OmA
differences should be negative, and for large separations they should be zero.
When extrapolated to zero separation the valuebof the correlation provides
bounds on the analysis error. The extrapolated value of the correlation at
zero separation provides a new way of estimating the observation error. The
occurrence of a positive intercept is clear evidence that the analysis system
does not take enough information from the observations, and so'is

inefficient.

In a theoretical O/I analysis the negative of the value of the correlation,

extrapolated to zero separation, should be equal to the weight given to the
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observation in the analysis of the observed value at the observation position.
In an efficient practical analysis system the area of the weight-intercept
plane in which the analysis system will operate is quite restricted. That
area is roughly bisected by the line where the megative intercept equals the
weight, i.e. the line on which the thedretical 0/1 analysis operates. This
suggests that in a practical system the negative intercept and the weight
should be nearly equal. If they are quite different then there may be
coﬁsiderable scope for improvement in the system. In a mannér of speaking,
this test of an analysis is rather like the method of back-substitution used
to check the solution of an equation: If the weight used a-priori agrees with
the weight estimated a-posteriori, then the analysis is about as good as it
can be. KXnowledge of the weight and intercept also provides an estimate of
analysis error at the observation position. If a practical analysis is
efficient, knowledge of the analysis error provides an estimate of the
effective data density, and so an indication of the potential for increased

analysis resolution.

The methods outlined above are applicable to wind and thickness errors from
radiosondes, for which there is little spatial correlation in the horizontal
or vertical; the methods cannot be applied to height analyses, because of the
large vertical correlations in radiosonde height errors . The methods are
tested in practice by demonstrating that operational mid-tropospheric wind and
thickness analyses over North America are quite good, but that the wind-shear
and thickness analyses near the tropopause over North America are definitely

inefficient.

The studies of the OmA correlations were extended to cross-correlations of
mass and wind differences, which provide an observational check on thevbalance
of the analyses. The mass wind balance over North America is good for single
level calculations, but there is evidence of inefficient analysis of thermal
wind balance for thin layers near the tropopause. If anything the analySis of
the wind shear near the tropical tropopause is somewhat better than over North

America, probably because of the use of sharper vertical structure functions.
The methods developed in this paper provide a new approach to the problem of

analysis verification. The methods are simple, and represent'An’extension of

the standard methods for determining the statistics of forecast error and
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observation error. The new methods provide an inexpensive and effective set
of tools for identifying weaknesses in an analysis system. They are much

more incisive than simple statistics of OmA differences which are most useful
for identifying blatant problems. The new methods are also much more incisive
and much less expensive than tests using forecasts, although the forecast

tests are the acid tests for practitioners of NWP.

In addition to addressing the primary question of analysis quality, the
techniques developed in this paper érovide objective methods for comparing the
performance of operational assimilation systems. This has been an area of
considerable difficulty and controversy in the past. The tools used to
diagnose analysis performance in earlier studies have been measures of the fit
of the observations to the data, and studies of the forecast quality when
forecasts are run from different analyses. The first of these methods is

» crude and the second is very expensive. The methods presented here can be
used to test if all the data presented to a system is used effectively. If
this is not the case, then the results of a data impact study (which withholds

or adds a particular observing system) may not be reliable.

The methods for analysis validation discussed here, and the methods for
validation of short range forecasts presented in Hollingsworth and L¥nnberg
(1986), Lénnberg and Hollingsworth (1986) together provide a useful set of
indicators on the quality of an assimilation system, and a systematic means of
identifying shortcomings in the system. If one could demonstrate that a
three-dimensional analysis system had extracted all useful information frcm a
given observing system ih a given area, then nd further gains in analysis
accuracy can come from refinements of three-dimensional énalysis technique

alone.
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"APPENDIX: PROOF. THAT D - A IS POSITIVE DEFINITE

With the same definitions of the prediction error correlation matrix P, and
the scaled observation error covariance matrix D as in section 2,

Hollingsworth (1987) showed that there exist non-singular matrices Q and R

such that
Q5.B.g = 1]
@".D.Q = RIVIE"

where the diagonal matrix [v] , with entries vn, is positive definite, and R is

, . -1
orthonormal. It then follows, since é = g - g.(g+2) .g, that

RE.Q%.P.Q.R = [1]

R°.Q%.D.0.R = [v] (A.1)
R°.9"-2-0-B = Iz -

For any vector X of the same order as B, let Y =Q.R.X. Then

X PX=Y.[MN.X=])y (A.2a)
n

where Y, is the nth coﬁponent of Y. It follows that

xt.0.X = Y. [v].Y = Y v y2 ‘ (A.2b)
— 2= e = 1 n n
n
t t v Yn 2
X .é.& =Y. [1—_'_;] X = E 1+Vn yn (A.2c)

Since‘vn>0 for all n it follows that A is positive definite, and that both B-A

and D-A are also positivé definite. This completes the main proof. Some

useful corollaries follow.
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Since the diagonal elements of a positive definite matrix are positive, it

follows from the positive—definiteness of P-A and D-A that if ay and dk

represent the normalised analysis and observation errors at an observation

point k
2
1-<ak> > 0 (A.3)
<di>-<a}:i> > 0 . (A.4)

so that the expected square error of the analysed value at the observation
point is less than the expected square error of either the first guess or the

observation.

Moreover from Eq (6) it follows that at every observation point k

<(dk—ak)2> = <di>-<a]2{> < <d]‘z > (A.5)

so that the mean square OmA differences are smaller than the mean square

observation errors.

A further deduction from Eq (A.2) is based on the min-max characterisation of
eigenvalues (Wilkinson, 1965). If C and D are real symmetric positive
definite matrices, with eigenvalues gi, di arranged in non-decreasing order,

then
gi 4 di’ for all i

provided

x®.c.x < x°.p.X

for any vector X. Let Ai’si'Ti be the eigenvalues of P, D, and A

respectively, arranged in non-decreasing order. It follows from (A.2) that

T. < A., for all i
i i
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T, < §,, for all i
i i

The implications of this result are striking, in that if the principal
components of B, 2; A are ordered by their relative variance, the variance of
the ith component of A is always less than the variance of the ith component

of P or D, even though the principal components themselves are different.
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