Matching Machines to Programs

Dave Wilson
Consultant, Strategic Systems Group
Meiko Scientific
650 Aztec West
Bristol BS12 4SD.

Email: davol@uk.co.meiko

Tel: 0454 616171

Abstract

The problem of reconciling machine capabilities with software requirements 1s re-
examined and the thesis advanced that the efficient exploitation of parallel machines
calls for greater sophistication in the software development toolset than can be
supported solely by enhancements to existing low-level tools.

The methodology which underlies Meiko CSTools is described in order to illustrate
the scope and capabilities of this approach to software development

1 Introduction

Over the past few years, users of computers in the scientific and engineering
communities have come to recognise that many of the systems they wish to study
cannot be satisfactorily modelled on sequential machines. Furthermore, there has
been a widespread willingness to look to parallel computers for a solution to this
problem. The analogies with human work are clear and persuasive. If a sequential
computer resembles a tireless solitary craftsman who eventually completes all the
tasks allocated to him, a parallel computer is like a small factory full of people,
all working at once. Nevertheless, there is no clear consensus on the best way to
program such machines and users frequently find themselves uncomfortably close
to the raw hardware.

Any solution to these difficulties must satisfy three criteria:

e Programming must be straightforward and direct

263



e Programs must be immune to changes in the underlying hardware technology.

e Programs must be capable of exploiting the hardware efficiently.-

While work progresses on standardising high-level language support for both shared
memory and distributed memory programming models, it seems to be concerned for
the most part with matters of detail. The overall nature of program development for
parallel machines is considered either too trivial or complex to be of concern and the
shape of the target machine is unclear.

Much of this stems from the fact that, in attempting to arrive at an understanding
of how parallel machines should be programmed, we have adopted a design
framework which derives from the special case of the single processor. Although
we cannot entirely escape this methodology it is my intention to review its essential
characteristics and to show how it is best adapted to the demands of parallel
programming.

The history of technology has many examples of similar transfers of technique from
an existing to an emergent discipline. If the first digital computers had been parallel
machines we would have developed a software technology very different from the
one we are embarking on now.

Our experience is primarily with distributed memory, message-passing parallel
computers and I will concentrate on this architecture. This, however, should be
intrepreted as a convenient simplification and not as a denial of the applicability of
these observations to the shared memory model.

2 Programs

As users of computers we write programs - usually in some high-level language,
compile them and link them with appropriate libraries to create executable files.
Provided we present these executables to the right hardware running the right sort
of operating system, we get programs which work - or at least starr to work.

If we consider the transformations which a program undergoes as it moves from
source to execution, they can be summarised as follows:

1. Compile - constrain to instruction set.
2. Link - constrain to run-time environment.
3. Load - constrain to specific hardware.

264



Interestingly, while there are volumes written on compilation techniques, the design
of linkers is considered to be of secondary importance and loading is almost always
reated as entirely trivial and pragmatic. This is perhaps understandable. It has
become customary to view linked executable files as ready to be passed directly
to the execution environment. Of course, what actually happens is that the operating
system layer responsible for the initiation of program execution reads the file header
and discovers the size of the program code, it’s stack requirement etc. It then attempts
to allocate the necessary memory resources. loads the program and initiates 1t's
execution.

Most parallel programming methodologies we have come across seem to have been
designed to a brief which requires that the relative importance of the operations listed
above is kept as similar as possible to that found in the sequential case. Thatis - that
the program is fully specified in a set of source files and that after compilation and
linkage an executable file is produced which contains all the necessary code and
loading directives necessary to start the program running on a real parallel machine.

Our experience at Meiko has led us to reject this approach. Instead, we found our
attention drawn to the loading operation as the most appropriate foundation on which
to develop support for parallelism. The methodology which underpins Meiko’s
CSTools is one in which the loader is elevated to the status of a program in its own
right - with sufficient control over the machine configuration to ensure. not only that
the segmentation of each processor’s address space is correctly managed but also
that the necessary system services are provided where needed and that the network
topology is well-matched to the communication requirements of the application.

In almost all real examples we have encountered, parallel programs are found to
consist of a few basic sequential components, supported by a similar butdistinct layer
of system infrastructure. The actual number of times each component is replicated
and the precise manner in which system services are provided are all secondary
matters which are more properly associated with the abstract parallel machine and
its method of implementation.

3 Machines

Conventionally we talk about rargening a program at a particular machine. This does
not imply however that we are talking about a real physical machine. More often
than not the machine consists of a set of interfaces to capabilities which it is assumed
the real machine will provide. This is what is known as an absiract machine. Two
immediate benefits follow from adopting this approach.

265



e Programs targetted at an abstract machine will, in general, be more readily
ported onto different physical machines. This assumes, of course, that the
abstraction is well-considered. The most familiar example is the Unix run-
time environment.

¢ If the abstract machine is defined at a sufficiently high-level there is sufficient
latitude for the hardware implementation to make effective use of advanced
hardware technology. This makes it possible for manufacturers to compete in
terms of the performance they can deliver to programs targetted at the same
abstract machine.

One might summarise the concensus view of an appropriate abstract machine for
parallel programs as follows.

e Itallows a number of application processes to run art the same time.
e Processes can send messages to one another

e Processes might want to share memory too.

The perfect implementation of such a machine would provide state-of-the-art
compute performance for each process and optimal communication bandwidth
between any two processes regardless of the number of processes engaging in
communication. Furthermore, the message latency between two processes would
be independent of their location. And - I almost forgot - the machine must be
scaleable too. In other words, all of this must remain true independent of the number
of processes running in the machine.

Needless to say, such an implementation is not really feasible at present. And yet
the time taken to transfer messages is so crucial to the performance of most parallel
applications that a second-rate implementation of the abstract machine is likely to
come a poor second to the same hardware specifically configured. This represents a
difficult dilemma for many people engaged in developing real scientific applications
on parallel computers.

If the target machine is transputer-based, it is hard to improve on the performance
obtained by programming the application in Occam. This brings with it certain
disadvantages, however. Since the target machine for Occam programs is devoid
of any sort of system service layer, it is common for much of the application
programming effort to be diverted into the provision of through routing and
file serving utilities. Worse still, these system components must be confusingly

266



comingled with the application program. While it is true that this type of machine is
efficient and directin its provision of basic processing and communication I€SOuIces,
the relationship between program and machine is too close. As high performance
processing and communication technology becomes available the Occam machine
begins to look awkward and restrictive.

It appears that we are driven to adopt a somewhat inefficient, abstract machine as
the target for software development. This is only true, however, if we consider
the implementation of the abstract machine to be static and unchanging across
all programs. There is no reason why the machine can’t be configured BOTH
to conform to the abstraction AND to achieve a close match with the program
requirements.

CSTools is a software system designed to achieve this objective - which we term
Adaptive Abstraction. In fact, though CSTools can be used to realise a number of
alternative abstract machines, the term Adaptive Abstraction describes the ability to
realise a specific abstract machine in a manner which is optimised for a specific piece
of software.

A CStools program is developed and run in a familiar operating system environment
on a sequential machine such as a workstation. As it executes it builds up a detailed
model of the parallel program AND the machine on which it will execute. Once the
model is fully evaluated the necessary hardware resources are committed, network
connections made and the program is loaded and run on the parallel machine.

Before describing CSTools in more detail it is necessary to describe a littde of the
background which prompted its development.

3.1 The Computing Surface

The machine at the core of all Meiko products is the Computing Surface. A
Computing Surface is a collection of processing elements. Each element is capable
of operating independently but may choose to cooperate with other nodes in the
system by exchanging messages. The Computing Surface is a multiple instruction
multiple data (MIMD) machine, each element runs its own processes acting on their
own data and accesses that of other elements by message passing. Each element
has the processing power of a powerful RISC workstation (currently 15-40 MIPS,
5-40 Mflops depending upon the processor type and the application) and could be
regarded as such. The intimacy of cooperation (current bandwidths are 4-8 Mbytes
of data per second between each processor and its neighbours) and the scalability of
communication (all of the processors in a system, whatever the size, can sustain these

267



data rates) ensures that large numbers of processors can be effectively employed in
solving a wide range of problems.

Some elements, such as disc controllers and communications interfaces are
specialised in nature, the bulk are (usually) dedicated to computation. A machine
is built by combining appropriate numbers of processing elements of each type to
suit the user, the application or class of applications.

Each Computing Surface element has four fundamental components, a processor,
a memory system, a communications engine and a control interface. Optionally
elements may have an interface to one or more 1/O devices.

Comms

Fig. 1 Generic Processing Element

Compute elements may have Sparc, i860 or Transputer processors, each provides
a different type of functionality.  Sparc and i860 processors provide high
performance general purpose computational capabilities with memory protection

268



and virtual memory. 1860s provide very high levels of performance for vectorisable
applications. Transputers provide excellent support for rapid context switching
and are significantly cheaper, but have lower levels of general performance and no
memory protection.

Elements are inter-connected via their communications engines, which are in turn
connected via switches. The switches are joined by channels in the backplane,
backplanes can be joined to form larger and larger systems.

Communications engines are currently made up of one or more transputers and
enable elements to be connected in a wide range of topologies. General purpose
arrays such as rings, trees, grids, torii and hypercubes are possible, as are application-
specific topologies.

4 (CSTools

CSTools evolved in response to the need to support software development within
Meiko and to provide a development toolset for our customers. This represented an
unusually diverse set of requirements. The major part of the work was undertaken
during 1988/89.

Having decided that the software development tools should run in a standard
sequential environment, we began by considering the kinds of representation which
might be appropriate for modelling programs, communication channels, processors
and memory spaces. Experience gained during the development of the Inmos Silicon
Design System suggested that when you're not quite sure of the ground ahead of
you, it is a good idea to structure the software as a general-purpose core onto which
specific behavioural modules can be attached at will,

The core structure adopted to implement CSTools was an object-oriented class
hierarchy in which methods are invoked via table-driven evaluation strategies.
Although this sounds complicated it means that CSTools is free to evolve in
two distinct senses. Firstly, new types of object can be incorporated into the
repertoire of entities which CSTools manipulates. The most obvious example of
this arises with the introduction of a new type of processing element. Secondly, the
rules determining the interactions between objects can be modified simply by the
replacement of the software module which defines them.

269



APPLICATION

ARCHITECTURE

CONSTRUCTION

Fig. 2 CSTools - layers

The software can be viewed as built up of three layers. The boundary between
the Application and Architecture layers is real. That between the Architecture and
Construction lavers is less distinet - but will become more clearly defined in the
future.

The layered structure is important in that it enables us - at different times - to evolve
new high-level interfaces on a stable foundation and to support existing high-level
interfaces on new hardware.

4.1 Application Layer

This is the layer we wish to develop as the principal point of contact with Meiko
machines, There will be  number of alternative, application-specific interfaces

270



at this level, each supporting what is considered to be the most appropriate view
of the application domain. Where an established standard appears to meet this
criterion, we will attempt to implement it - though it is important to recognise that
this is not always possible. An obvious example of this is Fortran as a standard for
scientific applications. The problem of targetting sequential Fortran, unchanged, at
a massively parallel machine has not been solved. When it has, the solution will
belong in the Application Layer.

To date, support for parallel applications has been provided in the form of a simple
textual description - the parfile. In the example below, fred, jane and bill
are the names of ransputer-executable files which have been produced on the host
workstation using a transputer cross-compiler. Each is essentially a straightforward,
single-threaded sequential program.

par
processor 0 fred
processor 1 Jane
processor 2 bill

endpar

CSTools interprets thig as meaning that each of the three programs is to be run on
a separate transputer and that any demand for file 1/O is to satisfied by invoking
requests on the host file system. In addition, if the application processes make use
of message-passing procedures, the necessary network connections will be made
such that there is a route between each possible sender/receiver pair. On transputers,
these connections are made in such a way that the number of intermediate processors
which the message must pass through is minimised for all routes. This is the default
wiring strategy. It is possible to specify alternative interconnection schemes with the
networkis keyword.

Parfiles represent a simple and direct method of describing parallel applications.
They are quite adequate for applications in which the component processes are either
quite small in number or are replicated over a single; regular topology. Where
complex topologies are involved or the application is built up of non-identical sub-
assemblies a more sophisticated programming tool is required.

We intend this to take the form of a graphical, symbolic editor which will be used
to construct visual representations of applications. We believe this to be the most
appropriate way to develop and fine-tune parallel programs.

271



A

Monitor

Process ©
] Comms
: Cpu
- ——4 S
e
i B
ju[alaa]a] ~£ af
Workstation

Fig 3. Visual programming interface.

Visual programming methods present several opporturities to broaden the scope of
the application development toolset. These centre arund the fact that a graphical
representation can be used to display secondary attributes of the program such as
system processes, the mapping of processes onto hardware and the interconnection
topology.

Once execution has started it will be possible to observe the behaviour of specific
hardware components. The development of complex parallel applications is greatly
facilitated by the ability to pinpoint processing and communication bottlenecks.
The monitoring of processor idle time and the density of link traffic can both be
accomplished relatively easily but do not relate directly to the primary program
structure. What emerges is that the need for two distinct views of the application.

The Program View

For this we require a visual language expressing processes and associated datatlows
in a clear and economical way. This should be hierarchical - permitting the
suppression of unecessary detail - and modular, in that it should be possible to
construct applications from independently developed sub-assemblies. An important
capability is to be able to specity and depict process replication over a variable range
[1]. The visual representational scheme will stop at the level of sequential code

272



modules. Beyond this it will be possible to access the module source in separate
overlaid text windows. In the program view, the principal monitoring tool is the
parallel debugger, with which execution of one or more sequential threads can be
studied at source level.

The Machine View

Here we are interested in processors and communication links and how application
processes and dataflows have been mapped onto them. It will be possible to see
how system modules have been used to provide access to standard services. In the
machine view, the most appropriate monitoring tools are processor load meters and
indicators of the density of link traffic.

To summarise, the visual programming tool is designed to deliver the following:

e Insightinto the essentials of the real machine and how the application has been
mapped onto 1t.

o Information on the the run-time behaviour of the application in the context of
a particular mapping

e Control over succesive iterations of the program evaluation such that
performance improvements can be attained.

4.2 Architecture Layer

At the Architecture Layer CSTools is primarily concerned with sequential program
components which have been defined by the user and with the management of
various associated attributes intended to control the machine configuration. Access
to the Architecture Layer is via library procedures which are used to build a seed
data-structure defining the parallel application. This data-structure is then evaluated
and grown into a complete representation of the program which incorporates
both the original user-defined components and standard building blocks used to
support requirements for the various system services - access to files, Inter-process
communications, graphics etc.

The Architecture Layer implements the policy governing the provision of these
services and how they are mapped onto a particular machine. Justas the Application
Layer supports several alternative application interfaces, so the Architecture Layer
supports alternative policies. Each corresponds to a distinct system architecture.

The current release of CSTools incorporates a documented library of procedures

273



known as CSBuild. This gives users direct access to the Architecture Layer. It
implements a system provision policy with the following characteristics:

e Access to files is provided according to the client/server model.
e The file server runs on the host machine.

e Network communications are provided by the CSN (Computing Surface
Network).

e Management of free store, and access to board-specific I/O interfaces is
provided by a local client process.

o Processes running on the 1860 processing element gain access to the above
services via a client process running on the communications transputer.

CSBuild also includes procedures for defining the grouping of processes on specific
computing elements and the physical interconnection of those elements. In this last
respect, the CSBuild policy is too involved with the target machine.

To preserve a proper distinction between layers, we now realise that a more
appropriate terminology is one which talks in terms of application topologies and the
degree of coupling between processes. The specification of application topologies
In particular, represents a more natural and direct interface to this layer than does
the description of a particular hardware wiring. Whereas we currently allocate
processes to processors and wire these together in a way which best serves the pattern
of communication traffic implicit in the run-time code, it is preferable to allocate
processes to nodes in an application dataflow graph and to leave it to the next layer
of evaluation to decide how best to support these requirements.

At the Architecture Layer, policies are defined in terms of data-driven strategies.
These are procedures which are invoked on encountering specific objects in the data-
structure. In this respect, CSTools resembles a high-level linker.

The evaluation of a CSTools data-structure starts with the original user-defined
processes. The requirements of these processes are expressed as named imporis.
A given import type will, in general, cause a specific strategy to be invoked. Some
strategies will only be invoked where the import name matches that given in the
strategy declaration; others are invoked on encountering any import of a given type,
regardless of its name.

Imports are not simply attributes with which executables have been tagged. The
majority are declared in library procedures defining access to system services and

274



are incorporated in executable modules as a result of the invocation of such services.
Each import corresponds to a location in the process data segment which must be
initialised with an appropriate value before the process executes. This mechanism is
extremely versatile at binding a specific service implementation to the code which
wishes to use it. For example, it is possible for a library procedure to import a
reference to a structure defining a distributed file store. This enables the user process
to establish the number of disk controllers on which the file store is implemented,
as well as the network address of each controller. If several processes import this
information, it is possible for a parallel application to access the filestore with optimal
efficiency and without recourse to clumsy configuration files.

Parallel Processing Resource
; E Distributed File Systemn Parallel Application
: I
i P e B e etttk
H i H :
t ' .
! | ‘ .
[o— ! server_u Apps H
: : H
| . : j
| ! ' '
' @ @ ; ; @ @ ;
! ; 1 H
i i i
1 ) ) H
1 ) 1 ;
) } ) H
i ) ) !
H P i
) I
| [ )
; : )
1 i ]
j/¥/ | 1 )
i 1 1 ]
i i )
; ; @ ' : @ @ |
| : 1
| | H ;
i 1
1 ) )
i 1
H ; ; PN |
h ;
: @ : : <upp_c) :
H [
| | e
| el |eal
i N |
1 . ;
; H H ;
1 H i
: H 1
__________________ fe e et

Fig. 4 Architecture Layer - distributed file store.

Inasmuch as both import and strategy declarations reference an identical set of
names, the libraries used to build the sequential code modules and the policy defined
in the Architecture Layer must match. Strategy declarations are only loosely bound
to the core software and ulternative policies are readily implemented. Each one
corresponds to a particular system architecture.

What we now perceive as important is to develop a number of policies at this level
which implement some of the more common structures encountered in scientific
computational problems.

275




Task Farming

The controlling process, at some point invokes a procedure which states that a
specific set of tasks is to be farmed out. The procedure encapsulates all the decisions
involved in determining the number of slave processes and their network addresses.

Application topology There are many classes of problem where an identical process
runs at each location in a regular topology. If this process declares an import which
specifies the class of topology required, submission of the process to an appropriate
CSTools utility is sufficient to generate the entire application.

4.3 Construction Layer

The Construction Layer provides the mechanism needed to implement the policy of
the layer above. It defines how processes, data-structures and datatiows are realised
on a specific set of resources. We do not provide a documented interface to this
layer, since it is only sensibly invoked by higher-level procedures. It is important,
nevertheless, to maintain the distinction between the provision of a given set of
abstract machine interfaces and their realisation.

The CSBuild policy targets a machine which consists, in general of a heterogeneous
mix of processors and environments. Processes which are to be run on the host or a
similar workstation will find themselves supported by the host operating system.
Initiating execution of these processes involves little more than the invocation
of a suitable system call. Transputer processes, on the other hand must be
explicitly provided with a number of physical memory segments for code, data and
workspace and the location of every object in the transputer memory space must be
unambiguously specified. |

Before a parallel application can be loaded and run the necessary resources must
be claimed and connections made to support the communication network. On the
Computing Surface, these connections are set up by sending messages to specific
processor elements over the supervisor bus - a global control bus which links every
element. Once the connections are established part of the resulting network is used
as the boor-tree. That is - it provides an initial route into the machine for programs
and data.

276



5 Conclusions

CSTools targets a machine which consists in general, of a heterogeneous mix of
processors and environments. This heterogeneity is central to Meiko’s computing
strategy. The range of choice of processor technology and the wide range of 1/0
interfaces now supported has allowed Meiko to configure systems to meet the
requirements of applications as diverse as database management and theoretical
physics. The computing surface architecture allows Meiko customers to scale their
‘systems to suit their applications and to grow their systems over time. It has alowed
customers buying our first T4 transputer-based machines to keep abreast of the latest
technology and to update them first with T800 transputers and later with 1860s.

However, this strategy requires that customers are spared the inconvenience
of having to undertake modifications to software, every time new hardware is
added to the machine. CSTools defines stable high-level interfaces which protect
the customer’s software investment while attaining significant improvements in
performance. CSTools achieves this in what we believe to be a unique way:.

Massively parallel computers are capable of delivering a staggering amount of raw
computing power. The continuing development of this technology in line with
Meiko’s corporate goal of “achieving performance through concurrency” demands
software tools that are equal to the task.

References

[1] West, A and Capon, P., "A High level Software environment for Transputer based
systems’
Proc. 12th. Occam User group, April 1990

277





