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ABSTRACT

The dominant singular vectors of the tangent propagator of the ECMWEF numerical weather prediction model
are an essential component of the ECMWEF ensemble prediction system. These singular vectors describe the
principal finite-time linear instabilities of the northern extratropical atmospheric circulation. The impact of
increasing the horizontal resolution of the tangent model from T21 to T42 on three different typés of initial
perturbation, which make use of these singular vectors, is considered. The effect of this increase in resolution
is to allow the possibility of describing more accurately instabilities with an upscale cascade of energy from
sub-synoptic to synoptic scales. Two of the perturbations are referred to as the pseudo-inverse and sensitivity
vectors. These are both diagnostic, and involve estimating from the short-range forecast error, the component
of initial error in the unstable subspace. The third type of perturbation is used to construct the set of initial

states for the ensemble prediction scheme. Linear and non-linear integrations are described using these
different types of perturbation.

All the results point to the conclusion that the higher resolution calculations lead to more accurate results.
This is found to be especially true in a number of cases where the control forecast was particularly poor.
As a consequence the predictability of synoptic-scale disturbances in the atmosphere on timescales of a few
days is likely to be determined by errors in the initial state on sub-synoptic scales. In addition to these

conclusions, the relationship between the amplitude of the ensemble perturbations and the pseudo-inverse

perturbations is discussed.



1. INTRODUCTION

The concepts of instability and predictability are intimately linked; broadly speaking, the more unstable a
dynamical system is, the less predictable it will be. The patterns of instability which dominate the energy-
spectrum of the atmosphere are associated with baroclinic modes, with typical scales of a few thousand km.
This leads to the commonly-heid view (e.g. Eady, 1949) that the predictability of the synoptic-scale flow is
determined by the (inverse of the) growth rate of these baroclinic instabilities.

However, the extra-tropical atmosphere also shares many characteristics with those of a quasi two dimensional
turbulent fluid containing a spectrum of interacting scales (Pedlosky, 1979). As discussed e.g. by Lilly
(1983), energy injection at sub-synoptic scales in a 2-dimensional turbulent flow would lead to an upscale
cascade of energy to the synoptic scales. More recently, Hartmann et al (1995) found that synoptic waves
that become fully developed in three days can arise from perturbations initially contained in the sub-synoptic
scales. An uncertainty in these sub-synoptic scales could then influence the predictability of the synoptic-

scale flow, irrespective of uncertainty in the synoptic scales themselves.

Consider a time interval t, < t < t, characteristic of the inverse growth rate of a baroclinic wave. The

question arises as to whether, over this time interval, the amplification of energy at the scale associated with
the baroclinic wave, exceeds that associated with the upscale energy cascade to the baroclinic scale from
initially sub-baroclinic scales. This question is central in determining the prec1se relationship between the
' mstablhty and predictability of synoptic-scale weather patterns. Uncertainties in the initial conditions of a
weather prediction occur at all scales. On the scale of the weather patterns themselves, uncertainties arise
particularly from the paucity of conventional data over the oceans. However, irrespective of location,
uncertainties inevitably arise on scales unresolved by the measurement network. Our question can be

reformulated as follows: is the predictability of weather determined by these synoptic or sub-synoptic scale

errors?

The ECMWF (European Centre for Medium-Range Weather Forecasts) Ensemble Prediction System (EPS)
is a practical tool for determining atmospheric predictability in the medium range (Molteni et al, 1995). At
the time of writing, the EPS comprises 32 medium-range forecasts run from initial conditions which are
slightly perturbed from the operational analysis. These 32 perturbations are themselves constructed from a
16-dimensional space that, in a precise sense is estimated to contain a selection of the dominant instabilities
of the atmospheric circulation. This unstable sub-space can be calculated from the singular vectors of the
forward tangent propagator of the primitive equations of motion (Buizza and Palmer, 1995; see also
section 2). Until 14 of March 1995, operational EPS perturbations were made using this propagator truncated
at horizontal spectral truncation T21 with 19 vertical levels (T21L19). Whilst this choice was dictated by

technical constraints, it can be argued that all of the dominant synoptic-scale instabilities were captured at

this resolution.



In this paper we compare estimates of the initial error in the unstable sub-space based on singular vectors
made with both T21 and T42 resolution tangent models, and corresponding ensemble forecasts. We will take
the view that scales smaller than that resolved by a T21 truncation are certainly sub-synoptic. The

comparative results, therefore, determine the relative importance of synoptic and sub-synoptic scales.

The two estimates of the component of initial error in the unstable sub-space are obtained by techniques
referred to as "pseudo-inverée" and "sensitivity" analysis. Of course, if 1the forward tangent propagétbr were
invertible, then the full initial error could be obtained from the forecast ’errVor. Non-invertibility is associated
with the existence of singular values close to or equal to zero. The pseudo-inverse defined in this paper
equals the familiar Moore-Penrose pseudo-inverse (Perrose, 1955; Golub and van Loan, 1983) in the

approximation that the singular values outside the unstable subspace are negligible.

Recent studies with adjoint models in numerical weather prediction (Rabier et al, 1994) have shown that the
gradient of the short-range forecast error taken with respect to the initial conditions, commonly referred to
as a "sensitivity pattern’, can be an effective means of identifying structures in the initial conditions that might
cause large forecast errors. The formal difference between the pseudo-inverse and the sensitivity pattern is
described in the main body of this paper. Rabier et al (1994) showed that, in éaseé where the operational
forecast was poor, the a posteriori introduction of an analysis perturbation based on the (scaled) sensitivity

pattern led to a significant reduction in the forecast error.

The results of this paper are based on seven case studies in which we consider singular vectors computed at
T21 and T42 horizontal spectral truncations growing over a 36-hour optimisation period. The control
forecasts in all seven cases can be classified as having average or below-average skill in the medium range
(forecast days 5-7, see Appendix A). However, three of the cases (94.01.03, 94.03.15 and 94.04.06), for
which the control forecasts were well below average, showed particularly strong sensitivity to the horizontal
resolution of the singular vector perturbations, especially over Europe, and are analyzed in greater detail. For

reference, a brief description of the synoptic situations during these sensitive cases is given in Appendix A.

The paper is organized as follows. In section 2, we briefly review the mathematical formalism of the singular
vector calculation, and define the (unstable sub-space) projection operators used to conduct the pseudo-inverse
and sensitivity analyses in section 3. In section 3, we compare the T21 and T42 unstable sub-spaces in terms
of the pseudo-inverse and sensitivity patterns. In section 4, we examine the impact of the singular vector

resolution on EPS performance. Conclusions are drawn in section 5.

2. MATHEMATICAL FORMALISM
The generation of the unstable sub-space of singular vectors is the first component in the calculation of initial
perturbations for the EPS. The mathematical development and dynamical interpretations of the singular

vectors have been described in detail by Buizza and Palmer (1995) but see also earlier work e.g. by (Farrell,



1982: Lacarra and Talagrand, 1988; Borges and Hartmann, 1992; Molteni and Palmer, 1993). In this
section, we review the definition of the singular vectors, and define their relationship to various measures of

forecast error used for conducting the pseudo-inverse and sensitivity analysis in section 3.

a. Singular vectors and the probability distribution of error
Let x(f) be a portion of a phase-space trajectory defined by (an M-dimensional truncation of) the nonlinear

primitive equations of motion over an interval #, < ¢ < t;. Let L = L(ft,) denote the forward propagator

of the dynamical system linearised about x(f) so that
x(t,)-L x(t) (€]

defines a mapping of the M-dimensional tangent space T.,

& x(ty) to the tangent spacé T,

%) at x(t,).

Finally, let L* denote the adjoint operator of L, defined with respect to a total energy inner product(..;..)
[see Buizza and Palmer, 1995, Eqs (2.4) and (2.5)]. Then the total energy of a perturbation x(f) is
@ IP=(L*L x(t,);%(t), o (2

where |[..| is the norm associated to the inner product (..;..).

The eigenvectors v, of the compound operator L*L, with associated eigenvalues osz, given by
L*'Lv,-a; v, | 3

form a complete orthonormal basis in Tz )" In linear algebra terminology, the v, and of are referred to as

the singula: vectors and singular values, respectively, of L itself. The spectrum of v, determines the

amplification of an element of T ) it is mapped by L along the trajectory to T

. )" At time t, the

singular vectors evolve to
u,-Lv, 4)

v =1, [d;] - o, &)

The o,, ranked in terms of magnitude, are the amplification factors of the singular vectors over the interval

t,-t,- Maximum energy growth over this interval is associated with the evolution of the dominant singular

vector v, ~i; . The sub-spaces P, < Ty

- ey and P;(tl) < T, , spanned by the first n singular vectors of the

-‘(tl)

spectrum will be referred to as the n-dimensional unstable sub-spaces at f(to) and x(t)).



The choice of inner product is not arbitrary. It is easily shown that the singular vectors i, are equal to the
dominant eigenvectors of the forecast error covariance matrix, in the inner product (...;:.) ¢ =<.;C.>, where<,;.>
denotes the Euclidean inner product, and C is the analysis error covariance matrix. As discussed in Molteni
et al (1995), the energy inner ptoduct (..;-.) is a fair approximation to (..;..)., especially compared with other

standard inner products based on perturbation enstrophy or streamfunction squared.

In essence, then, the dominant singular vectors at optimisation time (with energy inner product) approximate
the major axes of the forecast error covariance matrix (the second moment of the forecast error probability

distribution function). The phase space directions associated with the initial state, which evolve into these
major axes, are given by the dominant singular vectors at initial time. In terms of the (3)c inner product,

the probability of making an initial error along one of the dominant singular vector directions is as likely as
making an error along any other direction. To reiterate, this condition appears to be reasonably well

approximated using the energy inner product.

b. Relationship to pseudo-inverse and forecast sensitivity

Since the smgular vectors used in this study are computed with an opt1m1sat10n t1me interval ¢, -1, equal to
36 hours let us first consider a 36-hour forecast eITOT €y5. Itis convement to mtroduce a normahzed set of

evolved singular vectors u, with unit total energy norm, such that

ui-oi—llii, ©)

Mo, = 1. - o )

The projection of e, into the sub-space P;l(t‘) spanned by n selected singular vectors u, can thus be written
g, vut 8
€36 ~ €36 , : ®)

where U is an mxn matrix with columns #;, and the superscript T denotes a transpose. The dimension

m depends on the horizontal resolution of the model.

Using Eqs (4) and (6), we can approximate the projection of the forward propagator L into the unstable sub-
space by

L-uzvT, | | ©)

where V is an mx n matrix with columns v, and X is an nxn diagonal matrix with elements o,.

From Egs (8) and (9) it follows that ¢, is the linear evolution of the initial perturbation

& - Lle, - VEU e, (10)



Equation (10) is the analogue, in the unstable sub-space, of inverting the forward propagator L to obtain the
initial perturbation e;,. With respect to the full m dimensional space, L™ is the Moore-Penrose pseudo-

inverse (Penrose, 1955; Golub and van Loan, 1983) of L in the approximation where all the singular values

outside the unstable subspace‘are small compared with those inside the unstable subspace. In a perfect

model, e, is the analysis error, so that a perturbation p, = -e, would cancel e, exactly in a linear sense. In

contrast, a perturbation p,, - -€, describes the linear combination of n selected singular vectors that minimizes

the cost function

F-Lpy+ il +a?lpo?, | an
with o =0 (see Appendix B). The computation of € is straightforward for fixed n. However, as n
increases, this compﬁtation will eventually be divergent owing to the factors 1/o,, where 0,>0,>..>0,

associated with the non-invertibility of the full operator L.

Closely related to the pseudo-inverse is the gradient of the forecast error with respect to the initial conditions

VJ-L'e,, | Y
where J is a diagnostic ‘function defined, in this casé, as the difference, with respect to the total energy norm,
between the 36-h forecast and verifying analysis. The gradient VgJ ’ is often referred to as a sensitivity pattern

(following e.g.Marchuk, 1974; Cacuci, 1981) which, for convenience, we denote hereafter by s.

The relationship between the sensitivity s and the analysis error e, is most readily seen by expressing
Eq (12) in the form
s=L"Le,. _ (13)

Expanding e, in terms of singular vectors and using Eq (3), we obtain the projection of the sensitivity pattern

onto the unstable sub-space

§-V32vTe,. | (14)

It is clear from Eq (14) that the sensitivity pattern is dominated by the most unstable singular vectors. The

weights of given to the leading components of § are typically of order 100 or more at T42 resolution,
corresponding to amplification factors of 10 or more for the fastest growing singular vectors over a 36-h
optimization interval (see Fig 1). As demonstrated by Rabier et al (1994), the introduction of a perturbation

proportional to -s can thus lead to a substantial reduction in the forecast error in cases where the error is

dominated by the growth of these rapidly growing components. The relation between the sensitivity vector



|

1

and the pseudo-inverse can be obtained by noting that a perturbation p,~ -§ minimizes Eq (11) whena = e

(see Appendix B).

Using Eq (10) to substitute for e, We obtain the more practical form

§- VEUTe,. | - B | - | s

The comparison of Egs (10) and (15) shows that ¢, and § differ only in the weighting of the singular vectors
used in the projection. However, note that in contrast with €, §

converges for increasing values of n owing to the factors o

3. COMPARISON OF T21 AND T42 UNSTABLE SUB-SPACES
In this section, we examine singular vector growth in the T21 and T42 unstable sub-spaces, and the impact

of resolution on the pseudo-inverse and sensitivity patterns.

a. Singular vector growth «

Figure 1 shows the singular values for the first 25 smgula.r vectors at T21 (solid line) and T42 (dashed line)
resolutlon, averaged over the seven cases examined in thlskstudy. The impact of the higher resolution model
is fairly uniform across the spectrum, with the singular values at both resolutioné showing a rather gradual
decrease with Singuiar vector index. The dotted line in Fig 1 shows the ratio between the T42 and T21

singular values. Overall, growth rates are approximately 60% larger at the higher resolution.

Figure 2 shows the energy spectrum for the T21 and T42 calculatlons respectively, averaged over all seven
cases, and over the first 16 singular vectors. At optlrmsatmn time, both the T21 and T42 singular vectors
have maximum energy at synoptic scales. However, at initial time, the energy is spread over a broader range
of scales at T42 than at T21. Although the energy appears to be increasing to a maximum at the truncation
limit at both resolutions, the flatter spectrum at T42 suggests that a further increase in resolution would have

less impact than the increase from T21 to T42 (see also Hartmann et al, 1995).

These resuits show that the unstable sub-space is strongly non-modal. Energy cascades upscale as the
smgular vectors amphfy and an artificial truncation that restricts the number of octaves over which upscale
growth can occur also restricts the amplification of the perturbatlon (Moltem et al (1995) showed how the
use of an enstrophy norm would reverse the spectrum characteristics at initial and final time, giving
perturbations whose time evolution is characterized by a downscale energy cascade. However, it was argued
in that paper that the analysis error probability distribution would not be 1sotroplc with respect to an

enstrophy inner product.)



Figure 3 shows the geographical distribution of the first 16 singular vectors at T21 and T42 resolution for
all seven cases. The location of each singular vector is marked by a single black square positioned where
the singular vector vorticity at initial time is a maximum. The two distributions are fundamentally quite
similar. For example, both show a relative maximum in singular vector distribution over the regions of mean
baroclinity near the eastern seaboards of Asia and North America. There are, however, some detailed
differences between the two distributions. At T42 resolution, there is a reduction in the number of singular
vectors associated with the sub-tropical jet over the middle east, and a corresponding increase in the number
of singular vectors over the western Pacific. In general, the T42 singular vectors are somewhat more
concentrated in the jet stream regions. These differences are in part due to the fact that the jet streams are
more localized and characterized by stronger gradients at T42 than at T21. However, the larger number of
degrees of freedom associated with the T42 singular vectors will automatically imply a relative concentration

of energy near the most unstable regions.

Figure 4 shows the vertical distribution of total energy for the first 16 singular vectors averaged over all
seven cases. The vertical structure is little changed between T21 and T42. Both unstable sub-spaces show
initial singular vector structure with maxima in the lower troposphere, and final singular vector structure near
the tropopause. These characteristics were discussed by Buizza and Palmer (1995) and can be understood
qualitatively in terms of wave-action concepts. In general, if a linear perturbation is launched close to the
baroclinic steering level, and the perturbation propagates vertically towards the jet level, then conservation
of wave-action can imply substantial energy growth. Such a process has been modelled in a WKBJ

approximation by Zeng (1983).

b. Pseudo-inverse and forecast error analysis

As described in section 2b, the projected 36-hour forecast error, é,, is readily computed using Eq (8). In

Fig 5 the 500 hPa height of the forecast error &, is compared with the projections 5:352 ! and e';f 2 using 16

singular vectors at T21 and T42 resolution for the two cases, 94.03.15 (left panels) and 94.04.06 (right

panels).

The characteristic spatial scale of the e, field appears to be somewhat better reproduced in the T42
projection than in the T21 projection. However, despite the scale difference, the T21 projections have
comparable amplitude to the T42 projections, namely about 30%-50% of the amplitude of €,5- As such, the

smaller-scale features of the T42 singular vectors at optimisation time do not contribute much to the overall
proportion of forecast error explained by the singular vector projections (though as will be discussed, the
same conclusion is not true for the pseudo—inverse’ error field). Note that the spatial features of the forecast
error that are best reproduced in the singular vector projections are baroclinic wave trains in the oceanic storm
tracks (e.g.the Pacific wave pattern that stretches from approximately 35°N-165°E to the Gulf of Alaska in
the 94.03.15 case).



A more quantitative comparison between e, and its projections into the T21 and T42 unstable sub-spaces

can be made by looking at the energy distribution as a function of height (model level) and total wave
number. Figure 6 shows these distributions for the 94.04.06 case, in which the energy values for the
projected fields (Figs 6¢c-f) have been multiplied by 9 (equivalent to a factor-of 3 in the field amplitude) to
make them visually comparable with the full fields. With this scaling factor, the vertical energy profiles of

€36 e"a?l, and 53?2 appear very similar, apart from the error at the model’s upper boundary. The energy

peaks at level 8 (approximately 250 hPa) in e,s. and at level 9 (approximately 320 hPa) in the two

projections. Even the secondary maximum around level 16 (approximately 900 hPa) has a counterpart in the

curvature of the €, proﬁles.

The analysis of the total wave number spectra reveals that €, has a broader spectrum than either 53?1 or

63?2. However, both projections reproduce the double maxima at n=12-13 and n=17-18, which have been

documented in the singular vector spectra vémalyzed by Biu'zza and Palmer (1995). One can see that a large
proportion of the energy of é’a?z is accounted for by total wave numbers n <21, consistent with the fact that

the norm of 53?1 is only marginally smaller than the norm of e”ST:z.

Because the initial perturbation €, that linearly evolves into é,; is a linear combination of the dominant

singular vectors, it is, by construction, a linear combination of the initial perturbations used by the EPS (see

~ T42

Section 2b).y Figure 7 shows &' and €, for the cases 94.03.15 and 94.04. 06, as computed from Eq (10)

using the 16 singular vectors selected by the EPS for each date. The impact of the hlgher resolutlon smgular

vectors on these perturbations is quite dramatic.

By construction, an initial perturbation that is equal to &, will cancel the component €, of the forecast error

at 36 hours (in the linear approximation). However, it is not guaranteed that perturbation will also continue
to cancel a significant part of the forecast error beyond the linear range. Below we examine the results of
forecast experiments in which the initial perturbation is larger than, but proportional to, the pseudo-inverse
fields. In particular, Table 1 shows the skill of a series of T63 forecasts for the 94.04.06 case, in which the
initial analysis was perturbed by a pattern equal to ké,. It compares the geopotential height errors at 500 hPa

for the control forecast with those of the perturbed forecasts using T21 and T42 singular vectors with
different values of k. The RMS errors for the northern hemisphere extra-tropics (i.e. the extra-tropical region
¢ = 30°N, hereafter NHET) are listed for forecast days 1, 3, 5 and 7, with the smallest RMS error for each

forecast day underlined.



day 1 day 3 day 5 day 7

Control ' 13.1 36.6 737 789
k=1 ™ 129 U6 694 767
- o T42 129 322 - 622 760
_ T21 13.0 34.0 67.6 772
k=2 T42 12,9 30.7 57.1 7.7
k=2 T21 13.1 33.2 65.8 772
T42 130 297 53.2 65.5

_ T21 13.5 32.7 65.0 77.0
k=2y2 13.4 294 50.5 634
k=4 T21 14.5 33.1 65.0 78.3
T42 143 31.8 527 65.8

Table 1 NHET RMS error of control and perturbed forecasts for 500 hPa geopotential height, with
perturbations equal to ké,, for the 94.04.06 case. For each forecast day, the smallest error is underlined.

At forecast day 1, which lies within the optimization time intérval, the smallest error is obtained for k=1 for
both the T21 and T42 perturbations, as expected from theory. In this case, the two resolutions give the same
result, which is only slightly better than the score of the control forecast. This is consistent with the fact that

both 537521 and e"s?z explain about 1/9 of the energy of e,,. After forecast day 1, however, the most skilful
forecasts are obtained for larger values of k, and (for any k) the T42 perturbations provide a greater

improvement over the control than their T21 counterparts. The T42 perturbation with k=22 is the most
effective beyond the linear optimization time. For example, at forecast day 5 it gives an RMS error of 51 m,
compared with 74 m for the control and 65 m for the T21 perturbation with the same amplitude. It is
intriguing to note that the value 24/2 is very close to the factor that would make the energy of the 36-hour

perturbation, é,, equal to the energy of the 36-hour forecast error, €36

Results for the other sensitive cases produce similar conclusions, namely, that from forecast day 2 onwards,

the greatest improvement over the control forecast is obtained with a T42 perturbation with k>1. The

optimal value may be /2<k<2 for these cases, depending on the forecast.

There are two possible explanations of these results. Firstly a larger amplitude may be needed in order to
account for nonlinear error growth. In this respect it may be important at the end of the period of linear
growth to have achieved a perturbation amplitude comparable with the total forecast error amplitude.
However, it is also possible that the larger initial amplitude may be necessary to compensate for the effects
of random model error (which themselves could project onto the unstable subspace, see the conclusions

section). The implications of these results on EPS perturbations are discussed in section 4.
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There is another reason why the T42 tangent model may be preferable for calculating initial perturbations
for T63 nonlinear integrations. Specifically, the T42 linear propagator L can be expected fo be closer to the .
actual evolution with the nonlinear T63 model, than the equivalent T21 propagator. To verify this, we can

compare e, (which represents the linear evolution of €, according to L) -with the 36-hour perturbations

originated from é; and -¢€; in the T63 model. The fields 537521‘ and e'a?z were shown in Figs 5d.f,

respectively, while the corresponding nonlinear 36-hour evolutions are shown in Fig 8. *

It can be seen that, for this time range and amplitude, T63 perturbations started from é, and -¢, are very
closely anti-corfelated, indicating that the perturbation growtﬁ is still linear in the T63 rxiddel. “This is in
agreement with the results of Buizza (1995) who estimated that non-linearity becomes important after 2 days
for peftu:bations generated as in the T21 conﬁgurations. However, while the T63 nonlinear évdlutioﬁ of e"om
is very close to e“S?Z , larger differences can be seen for the T21 perturbation. For example, the Pacific wave

pattern is very well reproduced at T42 resolution, but has a different phase and meridional shape at T21
(especially along the dateline). Differences are also evident over the western Atlantic and the Mediterranean.
A perturbation ’optimized’ along a linear T21 trajectory may therefore behave in a non-optimal way when
superimposed to a T63 trajectory, even in the time range during which the evolution is linear. At T42 this
discrepancy is much less evident, providing a strong argument for the use of T42 singular vectors in the

fm—

construction of ensemble perttlrbations.

c. Sensitivity analysis
As described in section 2.b, the projected sensitivity field, §, is easily derived from e, using Eq (14). Here,

as in section 4, we focus our analysis on the two sensitive forecasts cases 94.03.15 and 94.04.06..

Figures 9a,b show the sensitivify s for these cases in térms of geopotential height at approximately 500 hPa
cok'rﬁputecvl ﬁsing the adjoint operator of the ECMWF forecast model at T63 resolution. For pfesentatioﬂ
purposes, these fields have been truncated to T42 resolution. - Figures 9c-f show the projections § ! and 5§72
of these fields using 16 singular vectors computed at T21 and T42 resolution, respectively. As in Fig 5, the
panels on the left (right) correspond to the 94.03.15 (94.04.06) case. There are several interesting points of
comparison between the sensitivity projections shown in Fig 9 and the fo:ccgst error projection and pseudo-

inverse shdwn in Figs 5 and 7.

First, it should be noted that the contour intervals in Fig 9 are many times larger than in Figs 5 and 7 since
the sensitivity fields in Fig 9 represent a gradient field rather than the geopotential height field itself. [These

fields have units of geopotential height as a resglt of using the total energy norm to define the adjoint

operator L*; see Rabier et al (1994).] An appropriate scaling of the gradient is thus required before a

11



meaningful comparison can be made between, say, the RMS amplitudes of s and €,- Rabier et al (1994)

have shown by empirical means that scale factors on the order of 10? give reasonable perturbation amplitudes

for the gradient of the 2-day forecast error computed with a T63 adjoint model. Although scale factors of

this order are in fact consistent with the differences in magnitude between €, and s as shown in Figs 7 and

9, we-have made no attempt to derive an appropriate perturbation scaling of s for the purposes of this study.

This topic will be discussed in a subsequent paper that examines more thoroughly the relationship between

sensitivity perturbations and singular vectors.

Figure 9 shows that, as in the case of ¢, the increase in horizontal resolution has a significant impact on §.

Clearly, the typical spatial scale of s is far better reproduced in the T42 projections (Figs 9e,f) than in the
T21 projections (Figs 9c,d). Note, for example, the close correspondence between the major sensitivity

features in Figs 9b,f for the 94.04.06 case, especially over North America, central Europe, and the western

Pacific. The positions, spatial scales, and orientations of these features are well reproduced by §™? in Fig 9f.

The "L" shaped double maximum in the sensitivity pattern over North America is particularly well

represented in the projected field.

We can compare these sensitivity projections with the pseudo-inverse €,, shown in Fig 7. Overall, there is
a strong resemblancg between these fields. This result is consistent with the fact that § and é, differ only
in the reciprocal weighting of each term in their expansions by the appropriate growth rate o, [see Eqs (10)
and (14)], where the spectrum of o, tends to decrease gradually as shown in Fig 1. Thus, &, and § are
similar in appearance except that, for example, in the case of §, those structures that project onto the fastest
growing singular vectors (corresponding to the largest values of a,), have greater relative amplitude than the

corresponding structures in €,. Note, for example, the difference between the relative amplitude of the "L"

42

shaped double maximum in §°# over North America (Fig 9f), which projects strongly onto the first and

second fastest growing singular vectors for this date, and the corresponding feature in e’oT"2 (Fig 74).

Similar conclusions can be drawn for the case 94.03.15, namely, that §™2 is superior to §™ in capturing

the full sensitivity pattern and that, in general, § and €, are similar except for the relative amplitudes of

individual features. In this case, there is a striking difference between the relative amplitude of the western

~ T42

Pacific wave train in §™ and &, (Figs 9e and 7c, respectively). Again, this feature projects strongly onto

two of the fastest growing singular vectors for this date. In summary, the similarities and differences between

Figs 7 and 9 are clearly consistent with the properties of &, and § described in section 2b.
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Figure 10 shows the energy distribution of s and its projections into the T21 and T42 unstable sub-spaces
as a function of height (using model level) and total wave number for the 94.04.06 case. These plots are

analogous to those shown in Fig 6 for e,,. Similar energy distributions were computed for €, ( not shown),

and these show little qualitative differences from those for §. Thus, given the stI“ong‘ qualitative sirnilarity

between e'o and §, as also revealed, for example 'in Figs 7 and 9, and in view of the fact that ed itself is

unknown, we restnct our discussion for now to s and €36 and their pro_]ectlons We refer agam to the fact

that the relatrvely large values in Fig 10 compared with those in Fig 6 (note the dlfferent axes scaling) are,
in part, a result of the sens1t1v1ty fields bemg representatlve of the unscaled gradlent of the meteorologlcal
fields. Also note that the projected fields in Fig 10 were plotted using the same‘scaling as for the full fields,
whereas the projected fields in Figs 6 were multiplied by a factor of 9 in order to make them visually
comparable with the full fields.

The vertical energy profile for s in Fig 10a shows a single significant peak near model level 10
(approximately 410 hPa), which is somewhat lower in herght than the peak at level 8 (approximately

250 hPa) for e, in Frg 6a. This is consistent w1th the fact that the sensitivity pattem tends to have its
maximum amplitude in the lower to Imddle troposphere while the forecast error tends to have its maximum

amplitude near the upper—tropospherlc jet (Rabter et al 1994). In thls case, the energy peak for s occurs
at a higher level than the typically observed level Qf maximum sensitivity between 850 hPa and 600 hPa.

21 g T42

The vertical energy profiles for §'* and §

in Figs 10c,e also show a single peak with similar structure
as the full field, but with less amplitude and at a slightly lower level of 600 hPa. Roughly speaking, we can

deduce from these profiles that the energy of s is nearly four times larger than that of § 7, but only slightly
more than two times larger than that of §7#2. These ratios can be compared with those deduced from the

vertical energy profiles in Fig 6, which indicate that the energy of e, is roughly nine times larger than that

5 T21 5142 : : : . . :
of both e3? and €, . Thus, we again draw the conclusion that the increase in horizontal resolution has a

significant positive impact on the projection of the sensitivity pattern into the unstable sub-space of singular

vectors.

The total wave number spectrum in Fig 10b shows that s has substantial energy at scales n > 10, with a very

broad peak near n=20. The spectrum is consistent with those observed by Rabier et al (1994) for sensitivity

perturbations based on 2-day forecast errors. As in the case of e0 ! (see Fig 6c), the spectrum for §7 in

Fig 10d shows that the projection onto T21 singular vectors is clearly inadequate for capturing the small scale

features of s, and that most of the energy is confined near the truncation limit. In contrast, the spectrum for
§T in Fig 10f shows a more or less even distribution of energy at scales n>15, and no evidence of energy

being confined near the truncation limit. Again, the total energy of s appears to be just over two times larger
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than that of §™2. Note that the spectra for both projections have very little energy at large scales n<10,

indicative of the relatively small scale structure of the singular vectors at initial time.

The relatively large impact of the T42 singular vectors on the sensitivity projections is clearly revealed by
comparing the sensitivity spectra in Figs 10d,f with the forecast error spech‘a in Figs 6d-f. In Figs 6d,f the

overall character of the spectrum is changed very little by increasing the singular vector resolution from T21

to T42 since most of the energy in e, is in the range n<20. In Figs 10d;f the character of thé spectrum is

changed dramatically with the T42 singular vectors. The large impact of the T42 singular vectors on§
compared with €, is indicative of the fact that the unstable sub-space is characterized by small spatial scales

at initial time and larger spatial scales at optimization time.

As mentioned earlier, energy distributions for &, were found to be qualitatively similar to those for § shown
in Figs 10c-f, except that, for €j, the total energy was greater for the T21 projections. This is explained by
the more localized structure of the T42 singular vectors, and by the reciprocal weighting by the growth rates o ;

in the case of €,, which tends to reduce the amplitudes of the fastest growing structures. These effects

become especially noticeable at T42 resolution since the growth rates are larger than at T21 (cf. Figs 7c,d
and 9e,f). In addition, the smaller growth rates for the T21 singular vectors imply that a given forecast error
at, say 36 hours, must necessarily have started with larger initial amplitude at T21 than at T42.

4, ENSEMBLE PREDICTION

As a final test of the impact of horizontal resolution on singular vector estimates, we discuss results from
ensemble forecasts with perturbed initial conditions generated using T21 and T42 singular vectors. For each
case study, ensembles have been run in four different configurations using the T63L19 version of the

ECMWF operational model. Configurations "T21" and "2T21" use as initial conditions the same set of

singular vectors computed at T21, the latter with an amplitude /2 larger than the former. Configurations

"T42" and "2T42" use the same set of T42 singular vectors, the latter with an amplitude /2 larger than the

former. Note that the ECMWF operational configuration has been "T21" until 23 August 1994 (see Molteni
et al, 1995), and "2T21" until 13 March 1995 (see Buizza, 1995).

For reference, the norm of a typical "T42" ensemble perturbation is about 0.8 m?*s2 This can be compared
with a typical amplitude of about 0.5 m’s? for the pseudo-inverse perturbation, as discussed in section 3b.
The amplitude of the EPS perturbation is determined in part by the requirement that the spread of the EPS
in the medium rangé should not be much smaller than the error of the control forecast. The fact that the EPS
perturbation ampliﬁide is larger than the pseudo-inQerse, is consistent with the 10-day forecast experiments
discussed in section 3b where it was shown that a minimisation of medium-range forecast error was ‘obtained

with perturbations proportional to, but larger than, the pseudo-inverse. The extent to which this is
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predominantly associated with nonlinear effects or model error effects is not known at present (see

conclusions).

In sub-section 4.a we analyze in detail ensembles run in the four configurations for one of the sensitive cases;

in sub-section 4.b. we discuss results averaged over the seven cases, and over the three sensitive cases.

a. 94.04.06: ensemble performances

Figure 11 shows the average (computed over the 16 perturbations) RMS amplitude of perturbation
temperature at about 700 hPa, close to the level of maximum amplitude (see section 2) for configurations
2T21 and 2T42. Due to their scale, T42 perturbations tend to be more localized in the regions of instability,
and this éxplains why larger local maxima can be detected in the average RMS perturbation amplitude field.

Figure 12 shows the RMS error and spread of the ensembles run in the four different configurations,
computed over the NHET (left panels) and over Eurbpe (right panels). For the T21 ensembles (Fig 12a-d),
we can see that 2T21 has larger spread throughout most of the forecast period, and this leads to a slightly
better ensemble-mean performance after forecast day 5, especially over the European area. Note that, during
most of the forecast period, the mean spread of the T42 ensemble is comparable to the spread of the 2T21
configuration (Fig 12c-f), due to the faster growth of the initially smaller T42 perturbations. Comparing
ensembles run in the 2T21 and T42 configurations (i.e. comparing the two configurations with similar
spread), ‘ensembles with the higher resolution singular vectors have more skilful ensemble-mean fields. The
comparison of the T42 and 2T42 configurations shows that the further increase of the average spread does

not produce a significant improvement of the ensemble skill.

For each ’conﬁguration, the skill of the control and most skilful ensemble member (between day 5 to 8) is
listed in Table 2. The most skilful member (number 4) of the 2T21 ensemble is more skilful than the most
skilful member (also number 4) of the T21 ensemble. On the other hand, the best member of the T42
ensemble performs better than the best member of the 2T42 ensemble at forecast days 5-6, and worse at
days 7-8. '

Configuration  Ens-num  ACC skill Eur at fc-day RMS err Eur

5 p 7 at fc-day 7

| Control 05 -09 .12 .17 129.8
T21 4 74 74 71 58 760
2T21 4 83 83 .79 70 70.8
T42 19 85 85 .77 61 70.6
2T42 19 80 .80 78 .82 182

Table 2 ACGC skill of the control forecast, and of the best members of ensembles run
in all configurations for the 94.04.06 case.
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Figure 13 shows the initial perturbations associated with the most skilful member of the 2T21 and the 2T42
ensembles. The region where both perturbations have significant amplitude is over North America.
Figure 14 shows the verifying analysis, the control forecast, and the best member of the T42 ensemble at
forecast day 7. The perturbed forecast performs better than the control since it succeeds in predicting the cut-

off low over eastern Europe.

b. Composite results

Figure 15a shows the average over the seven cases of the ensemble-mean NHET RMS error for
configurations T21 (solid), 2T21 (dash), T42 (dotted) and 2T42 (chain-dash), while Fig 15b shows the NHET
RMS error but averaged over the three ’sensitive’ cases. In a similar way, panels (c-d) show the RMS

spread associated with the four ensemble configurations.

Comparing the 2T21 and T42 ensembles (which, on average, have similar NHET spread), Figs 15a-b show
that configuration T42 is slightly more skilful. Configuration 2T42 has a slightly more skilful ensemble-mean
after forecast day 5, but has the least skilful ensemble-mean between forecast days 1-4. Figures 15¢-d show
the impact of increasing perturbation amplitude throughout the forecast range, and illustrates the fact that to
obtain a given level of spread in the medium range, a larger initial amplitude is needed using T21
perturbations. '

Figure 16 shows European RMS error and RMS spread averaged over the three sensitive cases. These results
indicate that the T42 ensembles perform notably better than either the T21 or the 2T21 ensembles. Again,
Fig 16 shows that while the skill of 2T42 ensemble mean is the best after forecast day 7, it is the poorest

between forecast days 1-4.

In addition to these scores, a cluster analysis has been performed on the 500 hPa geopotential height at
forecast day 7 over the European area. As in Molteni et al (1995), the Ward hierarchical clustering algorithm
(e.g. Anderberg, 1973) has been used, with the internal variance of each cluster set equal to the monthly-

average forecast error variance at day 3.

Table 3 lists, for each case and for each ensemble configuration, the ACC skill of the best cluster and the
number of ensemble members in that cluster (in brackets). The clusters are ordered by population, the first
number in the super-script is the cluster order number and the second number is the total number of computed
clusters. When the best cluster coincides with the most-populated cluster its ACC skill is underlined (e.g.
the T42 ensemble for the 94.04.06 case). For example, for the 94.04.06 case, we can see that, for the two
T42 configurations, the best cluster coincides with the most-populated and has a higher level of skill than the
equivalent T21 clusters. On average the most skilful of the T42 clusters are more skilful than the equivalent
T21 values. The average number of members in the most skilful cluster is larger with higher resolution, with

the largest average size occurring for the T42 configuration.
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T21 2T21 T42 2T42

92.12.28 77%(7) 76 % (6) 8 6 (11) 75 % ( 6)
93.02.14 774 (4) 8126 (7) 85 ¥ (4) 78 ' (8)
93.09.06 80 23 (11) 78 4 ( 6) 747 (11) 76 %5 ()
94.01.03 61 % (3) 69 2° ( 6) 72% ( 6) 774 (4)
94.02.20 712 (9) 76 % ( 5) 724 (4) 744 (5)
94.03.15 26 2 ( 6) 39 ™ (14) 7455 (3) 721 (7)
94.04.06 50 5 (2) 57 % (4) 65 (11) 71" (12)
Average 63  (6.0) 68  (6.8) 4 1) T4 (10)

.. Table 3 Characteristics, at forecast day 7, of the cluster with the best ACC skill. For each case and
for each configuration, the first number represents the ACC skill (in %), the superscript fraction
represents the cluster ordering number (ordered according to the population) with respect to the total
number of clusters, and the value in brackets represents the number of ensemble members in the
cluster (e.g., for the 94.01.03 T42 ensemble, the best cluster is number 5 of the 6 generated clusters,
it has 74% ACC skill, and it is composed of 3 members). Underlined ACC skill highlighted the cases
when the best cluster coincides with the most-populated cluster.

7. DISCUSSION AND CONCLUSIONS

In the introduction we posed the question as to whether the predictability of a synoptic-scale weather system
in the short or medium range was determined by uncertainties in the initial state on the scale of the weather
system itself, or by uncertainties in the initial state on scales much smaller than the weather system. To test
this, we have studied the impact of various relevant initial perturbations estimated using forward and adjoint
tangent models with either T21 or T42 resolution. If the synoptic-scale flow was only dependent on synoptic-

scale uncertainties, then results should be largely independent of horizontal resolution.

The initial perturbations studied in this paper lie in the unstable subspace defined by the dominant singular
vectors of the forward tangent propagator of the ECMWF numerical weather. prediction model. These
singular vectors have been calculated using a total energy inner product. It has been argued that the analysis

error covariance matrix is approximately isotropic in this inner product space.

The perturbations considered are of three types. The first two types of initial perturbations are diagnostic;

they are based on a projection of a given 36-hour forecast error field onto the set of singular vectors. The
first perturbation (€,) is essentially the pseudo-inverse of the forecast error field, the second (§) gives the

gradient of the forecast error with respect to the initial state. The third perturbation is prognostic; it is a
perturbation that would be used in the ECMWEF Ensemble Prediction System.

All the results highlight the sensitivity of the €, and § perturbations to the resolution of the tangent model,

and show that significant amounts of energy in the €, and § perturbations resided in scales smaller than T21.

This was particularly evident from the pseudo-inverse and sensitivity prOJectlons using the hlgher resolution

singular vectors.
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Moreover, by studying the skill of ensemble forecasts, it was shown that the skill of the resulting medium-
range forecast could, in general, be improved more by using perturbations from the T42 tangent model than
using the T21 tangent model. The implication is that the quality of the initial conditions between
wavenumbers 21 and 42 can play an important role in determining the skill of the subsequent forecast of

forecast activity.

These results are consistent with studies of upscale energy cascades in turbulent fluids studied theoretically
and experimentally (e.g.Lilly, 1983, Metais et al, 1994). In these studies it is suggested that if atmospheric
motions can be modelled by quasi-two dimensional turbulence, then energy associated with mesoscale forcing
can propagate in spectral space, forming the -5/3 spectrum dbser_ved on scales up to about 1000 km. Energy
could then be 'eXpected to disperse further up the spectrum to synoptic scales. Shutts (personal

communication, 1995) has modelled this process in a large-eddy model with explicit convective forcing.

However, the benefit of the high resolution singular vectors was not felt uniformly over all cases studied.
Specifically the impact of the T42 singular vectors was largest for cases of low predictability in which both

the sensitivity pattern and the pseudo-inverse patterns had relatively large amplitude.

As a result of these studies, together with a more extensive set of quasi-operational tests (not reported here),
the real-time configuration of the ECMWF Ensemble Prediction System was modified (on 14 March 1995)
to calculate T42 singular vectors. At the same time, the optimisation interval was increased to 48 hours to

be consistent with routine real-time sensitivity studies. As a result, the amplitude of the ensemble

perturbations was set to a value smaller than the T42 configuration studied here (by a factor €y)-

It should be mentioned that, in this paper, we did not actually confirm the optimality of the evolved
sensitivity perturbations using the full nonlinear model. To perform this evolution with the full nonlinear
model requires a re-scaling of the sensitivity pattern so as to produce an appropriate perturbation amplitude.
As stated earlier, further investigation is required to determine a method for obtaining these scale factors since
there is no a priori guarantee that for each case the perturbation will be comparable in magnitude to, say, a
typical analysis error. This and other aspects of the relationship between singular vectors and sensitivity

perturbations will be investigated in detail in a subsequent paper.

In addition, we have not considered the role of model error itself in estimates of predictability. As well as
model systematic error, forecast skill can be expected to be affected significantly by random model error.
For example, within any grid box at any time step, the parametrized diabatic tendencies will have a random
error associated with the fact that sub-grid scale processes are not in strict quasi-equilibrium with the large-
scale flow. An example of the breakdown of quasi-equilibrium would be associated with convectively driven
circulations which occur on scales comparable with the model grid. Hence, in addition to the random forcing

associated with initial error, one can imagine a continuous background stochastic noise contributing to the
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error field. Just as with the initial conditions, the atmospheric response to this forcing would be felt by
components which project onto the dominant singular vectors. It would seem reasonable to suspect that such
stochastic forcing would occur on relatively small scéles, and that the T42 energy-norm singular vectors are

appropriate quantities to characterise the atmospheric response.

A corbllary of this is that the initial amplitude given to the singular vectors in the ensemble system might
also have to reflect both initial and model random error. In this way, perturbations which are significantly
larger than that given by the pseudo-inverse could be justified in the EPS. This would be consistent with
results which showed that the maximum ‘impact in the medium range of the pseudo-inverse pérturbation
occurred when the amplitude of the perturbation was increased. ‘
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Fig 1 Average singular values of the first 25 unstable singular vectors computed at horizontal resolution T21 (solid) and
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Fig2 Energy spectrum- (n?, s?) of the (a) T21 and (b) T42 singular vectors, averaged over all the cases and over the
first 16 singular vectors, at initial (dashed, x40) and final time (solid).
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3.15 and (b) 94.04.06. (c-d):

94.0

Fig 5 36h forecast error g, in terms of 500 hPa geopotential height, for the cases (a)

as (a-b) but for the

e-f):

(

~T21

as (a-b) but for the projection &,,~ of the forecast error on the T21 singular vectors.

projection é'ST: 2 of the forecast error on the T42 singular. Contour interval 10 m in (a-b) and 4 m in (c-f), with

negative values dashed.
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i.e. €,

on the T21 singular vector (
but for the projection on the T42 singular vectors (i.e.

3

Fig 7 Projection of the initial error, in terms of 500 hPa geopotential height

the 94.03.15 case, and (b) the 94.04.06 case. (c-d): as (a-b)

)- Contour intervals 0.5 m.
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Fig 8 94.04.06, 500 hPa geopotential height: 36h non-linear time evolution, computed using the T63L.19 madel, of (a)

é.(:)(z ! and (b) é'OT 42; 36h non-linear time evolution, computed using the T63L19 model, of (c) - é'gz T and (d) - é’oT 4,

Contour interval 4 m.
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Fig 9 Sensitivity, s, in terms of 500 hPa geopotential height, for the cases (a) 94.03.15 and (b) 94.04.06. (c-d): as (a-b)

but for the projection § 21 using 16 singular vectors at T21. (e-f): as (a-b) but for the projection § 42

singular vectors at T42. Contour interval 40 m in (a-b) and 20 m in (c-f), with negative values dashed.

using 16
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Fig 10 Total energy (m2s2) distribution of 5 with respect to (a) vertical level and (b) total wave number for the case

94.04.06. (c-d): as (a-b) but for the projection § 21 using 16 singular vectors at T21. (e-f): as (a-b) but for the

sT42

projection §°““using 16 singular vectors at T42.
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Fig 11 Average RMS amplitude of the perturbations (temperature at model level 13) added to the control initial conditions
for ensemble configurations (a) 2T21 and (b) 2T42, for the 94.04.06 case. Contour interval 0.25°K, starting from
0.125°K. : ~ - : Lo o :
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Fig 12 Control RMS error (solid), ensemble-mean RMS error (dash), and average of the ensemble members’ RM spread
(dot) of ensembles run for the 94.04.06 case, in configuration (a) T21, (b) 2T21, (c) T42, and (d) 2T42. All RMS
values refer to the NHET. (e-h): as (a-d) but for Europe.
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Fig 13 Initial perturbations, in terms of SOO'HPa_ geopotential height, that added to the control initial condition gave the best

a)

prediction over Europe (in terms of 500 hPa geopotential height ACC), of ensembles run for the 94.04.06 case, in
configuration (a) 2T21 (ensemble member number 4) and (b) 2T42 (ensemble member number 19). Contour
interval 5 m, starting from 2.5 m, with negative values dashed. = ' BT

Fig 14 500 hPa geopotenﬁal height over Eurdpe of (a) the ahalysis for 94.04.13, ie. corresponding to forecast day 7 for

ensembles started on 94.04.06; (b) control, (c) best T42 7-day forecast over Europe. Contour interval 80m.
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Fig 15 (a): average computed among the seven cases of the ensemble-mean RMS error for configurations T21 (solid),
2T21 (dashed), T42 (dotted) and 2T42 (chain-dashed) over the NHET. (b): as (a) but considering only the three
sensitive cases (94.01.03, 94.03.15 and 94.04.06). (c): as (a) but for the average of the mean ensemble members’

RMS spread over the NHET. (d): as (c) but considering only the three sensitive cases. As reference in each panel
the thin-solid line shows the control RMS error. ; ‘ e '
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Fig 16 (a): average computed among the three sensitive cases (94.01.03, 94.03.15 and 94.04.06) of the ensemble-mean
RMS error for configurations T21 (solid), 2T21 (dashed), T42 (dotted) and 2T42 (chain-dashed) over Europe. (b):

as (a) but for the average of the mean ensemble members’ RMS spread. As reference in each panel the thin-solid
line shows the control RMS error.

32



APPENDIX A: SYNOPTIC SITUATIONS

Figure A1 shows the skill scores for the control forecasts in terms of anomaly correlation coefficient (ACC)
and root mean square (RMS) error for geopotential'heighi at 500 hPa over Europe. For days 5-7, the
forecasts started on 92.12.28 and 93.02.14 can be claissiﬁed as having average skill, forecasts started on
93.09.06, 94.01.03 and 94;03.‘1'5 as poor, and forecasts started on 94.02.20 and 94.04.06 as very poor. The
synoptic situations‘during the three poor or ,véry,poof cases (94.01.03, 94.03.15 and 94.04.06) are described
briefly. : : S

a. 94.01.03

At initial time, a trough is loc‘a,tve‘d‘ over the northeastern Atlantic, whilst continental Europe is characterized
by a weak anti-cyclonic circulation and southern Europe by a northwesterly flow (Fig A2.a). ‘Two days later,
a cyclone starts developing over the ‘Atlantic, and in the following days a deep trough appears over Europe.
By forecast day 7, the flow over Europe‘is split, with a cut-off low over Greece and an anti-cyclonic
circulation over northern Europe (Fig A2.b). After this, the flow over northern Europe becomes more zonal,
while a deeper cut-off low develops over the southern Mediterranean. The poor performance of the control
forecast after forecast day 6 over Europe is due to the erroneous prediction of a mature block over Europe
at forecast day 7. ‘ |

b. 94.03.15 o .

At initial time, the flow over the Atlantié-European sector is zonal north of 45°N, while two deep troughs
are positioned over the eastern Pacific and eastern North America (Fig A2.c). During the following days,
the flow ow)er the British Isles becomes more'norﬂlwestc'rlyv, associated with the arrival from the Atlantic of
aridge. At forecast day 7, this ridge moves towards The Neﬂlerlands, while the flow over Scotland becomes
strongly westerly (Fig A2.d). The flow over southern Europe is wé;akly anticyclonic. The control forecast
is very good up to forecast day 4, though later it predicts an éxcess_ivey fidge‘ west of the British Isles and an
excessively deep and incorrectly tilted trough over central Europe. This'leadé_ to 4 completely erroneous
prediction of a ridge over Spain and of a cut-off low over southern Italy at forecast day 7.

c. 94.04.06

At initial time, the flow over. the Pacific and over the Atlantic is zonal, with troughs positioned over the
central United States and over Europe; the latter having a northwest to southeast tilt (Fig A2.e‘)‘. 'During the
following days, a small cyclonic perturbation developing in the Atlantic moves toward Europe, and by
forecast day 4, a deep cut-off low is observed over central Europe, with a ridge west of the British Isles.
This situation persists until forecast day 7 (Fig A2.f). During the following days, a ridge over the
northeastern Atlantic intensifies, a cut-off low develops to its south, and a cyclonic circulation persists over
central Europe. The control prediction looses skill rapidly after forecast day 3, when an excessively weak
and incorrectly tilted trough is forecast over central Europe. This leads, at forecast day 7, to a completely

erroneous prediction of almost zonal flow over Europe.
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Fig A1 (a) ACC skill and (b) RMS error, computed over Europe, of the 10-day T63L19 control with initial dates: 92.12.28

(thick solid), 93.02.14 (thick dash), 93.09.06 (thick dot), 94.01.03 (chain-dash), 94.02.20 (thin solid), 94.03.15 (thin
dash) and 94.04.06 {thin dot).
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) and to the 7 day forecast, relative to (a-b) 94.01.03, (c-d)

e-f) 94.04.06. Contour interval 80 m. -
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Fig A2 Analysis corresponding to the initial condition (left panels
94.03.15 and
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APPENDIX B: AN OPTIMIZED ESTIMATE OF ANALYSIS ERROR. -

In this .appendix, we will demonstrate that the pseudo-inverse estimate €, of the analysi_s error and the

sensitivity pattern § can be v1ewed as solutrons of the same optrmlzatron problem correspondmg to d1fferent

values of an adjustable parameter

The problem can be formulated as follows. Suppose that a 3-dimensional data assimilation system provides
two independent analyses a,, and a, for the state of the atmosphere at time #, and ¢, respectively. Let

f, - T(ay,t,,1) ®.1)
denote the forecast obtained by integrating a dynamical model T from ¢, to ¢, with a, as initial condition.
The mean-square error of this forecast with respect to a, is B

E - | T(ay,1t,,t) - a, I . : e B.2)

where a suitable norm has been assumed.

One may argue that a better estimate of the true state of the atmosphere at time ¢, is given by a corrected
analysis a’ o Which minimizes the function ‘
F = wy " T(ao,9 tos tl) -a "2 + Wy “ aol - Hz (B3)

F represents the weighted sum of the mean-square forecast error at time ¢,, computed with respect to a,, and

the mean-square analysis difference.

The relative amplitude of the weights w, and w, should reflect the expected accuracy of the assimilation and
the forecast model. The ratio

o = wy/w, (B.4)
could be interpreted as the ratio between the expected mean-square errors of the forecast and assimilation
systems. However, even assuming a perfect model, @ should not be less than one, since the forecast error

term in (B.3) is computed with respect to the a, analysis, which is itself affected by an error likely to be as

large as the error in ay,.

If we defme‘ the analyéis error of g, as ‘eo -ao—'a’ 0 and assume that its norm is small eompared to the norm
of the full analysis, we can write |
T(ay, 1y, 1,) = T(ay- €y, 15,1,) = T(ay, 1,,1,) - Le, ’ (B.5)
where L is the linear propagator obtamed by hnearrzmg the model equatlons around the forecast trajectory
started from q,. With thls approxrmanon and drvrdmg all terms by w,, (B 3) becomes
F' = Flw, - |e ~-Le, P+ e €, & (B.6)

where e, - f,-a, is the forecast error at time £,.
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As in Section 2, let us write the singular value decomposition of L as
L-UZIV' ' ®B.7
where V is the matrix of the orthonormal singular vectors v, at time ¢, U is the matrix of the orthonormal

singular vectors u; at time t,, and E is the diagonal matrix of the singular values. Expanding e, and e,

onto the appropriate singular vector basis:

&=y v, , L ‘ ; (B.8a)

e, - Y du, | (B.8b)
and writing

Ley =Y c;Lv, =Y c,ou, , B.9)

i
the cost function F’ can be expressed as
F' = “Z (d,-‘C,-U,-)",-Hz o "Ecivillz (B.10)
i i
and from the orthonormality of the singular vector it follows:

F =Y (d-co)+aY c. | (B.11)

Given the e, forecast error, and therefore the d; coefficients, the ¢; values that minimize F’ can be found by

setting the partial derivative of F’ with respect to each ¢, equal to zero. One obtains:

; L—d,. . (B.12)

For singular values such that o? >a, then ¢, = g; ! dl.. Therefore, for small values of «, the projection of

e, onto the fastest growing singular vectors is well approximated by the pseudo-inverse estimate of anaIysis

error.

e, =~ VU e,. (B.13)

Conversely, when o? <o, then ¢, = a’! 0,d;. In the subspace of such singular vectors, e, becomes parallel

to the sensitivity vector:

g = als ~alVE U'e,. (B.14)

In practice, the full sensitivity pattern s becomes a good approximation to the solution of the optimization

problem given by (B.12) when o is of the order of the largest squared singular value.
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