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Summary: Probabilities can be used to quantify the extent of our knowledge about
past events. Bayes’ Theorem tells us how to combine these probabilities. It enables
us to calculate weights for the information sources, as a function of their error
distributions. With the aid of very simple examples I review the bayesian derivation
of standard statistical methods used to combine observations, leading for instance
to a quadratic variational penalty function. Introduction of a simple model for gross
observational errors is shown to substantially modify the behaviour, with a non-
- Gaussian posterior probability distribution that is often multi-modal. The choice of
the "best" analysis, maximizing the expected benefit, is discussed, and shown usually
- to correspond to rejecting those observation more likely than not to contain gross
eIrors. :
I discuss the theore‘ucal basis for three dlfferent practlcal approaches (based on the
‘Met Office bayesian sequential buddy checking scheme, the ECMWF "OI" scheme,
and a variational scheme). Possible weaknesses are pointed out, again illustrated
with a simple example. Finally I stress the 1mportance of momtonng

1 INTRODUCTION
1.1 Why Quality Control?

The quality control we do in data-assimilation has two reasons: ‘

1.~ We have physical reasons for believing certain events may occur which affect the observed
value. We wish to detect these events. ‘

2. The distribution of errors associated with a datum is such that there is a non-negligible
probability of errors that would be unacceptably large for the use we are making of the
datum.

Note that 2 depends on our use of the observation. If we are using an analysis method based on

a quadratic penalty function, it is linear in the observed values. A single large error can then be

disastrous (figure 1a). However if instead we minitrise the mean absolute deviation (We shall see

that this is the correct norm if the observatinnal error probability distribution function (pdf) is
proportional to an exponential of the absolute deviation), the bad datum is ignored (figure 1b).

Analysis methods designed to ignore such outliers are also considered to be quality control methods.
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Fig.1. Best fit straight line to data including a gross error, (a) using a quadratic (L.2) norm, (b)
using a mean absolute (L1) norm (from Tarantola 1987).

1.2 What is the Best Analysis?

In section 2 we shall see how the Bayesian approach can, in theory, give us the posterior pdf,
describing how likely it is that each atmospheric state is correct. However to start a forecast we
need a single best analysis'. In our simple example of figure 5, is the best analysis in the tallest
peak, or in the peak with the largest area? The theoretical approach to this is outlined in section
2.7. But in practice this is impracticable; more pragmatic judgements of what is best are implicit

in the practical schemes described in section 3.

2 BAYES THEOREM
2.1 Bayesian Probabilities

Nothing is certain in life, especially in weather forecasting. Forecasters are used to using
probabilities to express this. "There is a 25% chance of rain tomorrow" does not necessarily imply
that the atmosphere is random, but rather that the forecaster is uncertain. The use of probabilities
to quantify the extent of our knowledge, about future or past events, is the key to the Bayesian

approach.

2.2 Discrete Events

Suppose we have discrete events 4 and B, then we can use P(4) and P(B) to describe the
probab‘ility of them occurring in the future, or the extent of our knowledge about them, if they have
occurred in the past. Similarly we use P(ANB) to denote the probability that 4 and B both occur,
and P(4|B) to denote the conditional probability of 4 given that B has occurred.

' The choice of the best ensemble of analyses, to span the range of possible forecasts, is a major
research area beyond the scope of this paper.
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We then have two ways of expressing P(ANB):

P(ANB) = P(B) P(A|B)

ey
= P(4) P(B|A)
These lead directly to Bayes’ Theorem:
P(B|4) P4) S
P = 2D 1) . 2
(A|B) PB) (2)

When we apply this, we often use relative probabilities (i.e. we do not bother with the factor P(B)

), or else we calculate P(B) from:

P(B) = P(B|A)PA) + PB|AHPA) R &)

Example: Bayesian Dice
I have two dice. One is weighted towards throwing sixes. I have performed some experiments with

them, and have the prior statistics that:

for the weighted (W) die, P(6] W) = 58/60
for the good (G) die, = P(6|G) = 10/60
I choose one at random: P(W)y = P(CG) =12

I throw this die, and it shows a six. Now:-
P(6) = P(6| W) P(W) + P(6|G) P(G)
- =58/60 1/2 + 10/60 1/2
= 34/60

We can now apply Bayes’ Theorem:
P(G|6) = P(6|G) P(G)/ P(6)
= 10/60 1/2 /34/60 = 5/34

P(W|6) = PG| W) P(W)/ P(6)
= 58/60 1/2 /34/60 = 29/34

The information that I have thrown a six has added to my knowledge, so that the posterior
probability that the chosen die is weighted has increased. If I were to throw again, and get another

six, the probability would increase again.
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2.3 Continuous Variables

We can go from discrete events to continuous variables by defining events such as:
X: the true value x, is such that x<x<x+6x

Then P(X) = p(x) ox

Taking the limit dx—0, p(x) is a probability density function (pdf).

Zero-dimensional Bavesian Analysis

A Gaussian pdf about a prior value x” with background error variance ¥, is:

_ _ Tegg| L EXD
px) = N(x|x b,Vb) = <2n Vh) exp(—a v, ) 4)

where N(x|m,V) denoted a normal distribution with mean m and variance V.

P’ |x) = p(y’|x) dy’, is the probability of getting an observation 3°, given that the true value is x.>

For example a Gaussian pdf with observational error variance V, is:

01y = Ny 0 ) - 1 (y-x)*
pe°x) = NO’ lx,V,) = (2m Vo) exp -~ O)VO ) 5)
We can get p()°) by iﬁtegrating over all x:
PO = [pO°opedx ©)

Since the convolution of two Gaussians is another Gaussian, for our examples this gives:

PO°) = Ny°|x2V, +V) (7)

Bayes’ Theorem in continuous form is:

p@ly® - —’-’—(—Vi(‘y’ﬂ)’ix—) ®)
p (1)

> Note that all pdfs are conditional on knowing the prior value x". To simplify, we do not show
this explicitly in the notation.
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p(x|y”) is called the posterior distribution, p(x) the prior distribution, and p(3°|x) is the likelihood

function for x.

Substituting the pdfs from our example gives:

ply?) - N&xeV) ©)
where
a 0 b
X )’7 ; xv
. .
“ ? (10)
1 1 1
—_— = — F —
V.oV, W,
3 3
""" ply = Ny 4, 4 : cplyl =~ Ny 8, 4)
== p(x) = Nix; O, 9l mmmpld = Nog 0, 9)
2 = plx!yl=Nix; 2.8, 2. 24 = nlxlyl=Nlx; 5.5, 2.8)
J8 RS
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U4
U4 U4
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Fig.2. Prior pdf p(x) (dashed line), posterior pdf p(x|y") (solid line), and likelihood of observation
p(”’ |x) (dotted line), plotted against x for various values of 3”. (Adapted from Lorenc and
Hammon 1988).
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This is the standard formula for the combination of observations, studied by Gauss (1823). It is
illustrated in figure 2. Note that, due to the unique properties of Gaussian distributions, the

posterior distribution has the same shape for all values of 3 and x.

2.4  Multi-dimensional Bayesian Analysis

I have only space here to sketch out how this approach can be extended to data assimilation, in
notation consistent with Ide et al., (1996); a fuller derivation is in Lorenc (1986). The derivation
is illustrated with the simplest possible example - a one-dimensional model consisting of two grid-
point values, and a single observation at their midpoint. For this simple case the equivalent of
figure 2 can be shown as a contour plot (figure 3). The values that we wish to analyse are

combined in a vector x: in our example the two grid point values, x; and x,.

X
£
. x2
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Fig.3. Contour plot of the prior pdf p(x,,x,), for the simple example with a positive correlation
between the background errors of x”, and x’,.
Likelihood function: the probability ( p(3°|x) ) of getting the observation, plotted as a
function of x.

The observations are combined into a vector y°. We can make an estimate y of this from x; in our

example this is done by interpolation to the single observation:

y = H@x) = Jx,+x,
X, (12)
. =H x = 11
(2 2) x2

We have a prior estimate x* for x. Because the errors in the components of x* are in general

correlated, we cannot get the joint probability by multiplying p(x,)xp(x,). Instead we must use
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a multi-dimensional Gaussian:

p@x,) = p(x) = Nx|x"B) 3
= ((2n)*|B |)—Eexp(—%(x ~xTB (x-xb)

where B is a covariance matrix. Since our example x only has two elements, we can plot p(x),
shown as the prior pdf in figure 3. The error correlation between the grid points leads to the

elliptical shape - in a real model the ellipsoid has aspect ratios reaching 10° or more.

The instrumental error is described by the probability that the observed value lies between y° and

y°+8y”, given the true value? e

po°ly’) - ch"ly’-‘,ljn

TRy (14)
= @n[E|) exp(-(y°-y)E7 (")

Because we have only a finite representation of reality, in our example only two values, knowing

x' does not give us precise knowledge of y. This error of representativeness has the pdf:

pio°xh = N(y"IH(lxt),F)

2 1,0 I 1 t (1s)
= @ [F|) *exp(-;(y°-HE)F 1y°-Hex)

The observational error is the sum of these two effects. Its pdf is obtained by integrating over all

y which might be y":

po°lxY = [po°lyp'o]xdy (16)
- Ny °|Hx),E+F)

It is common to replace E+F by a single observational error matrix R.* For our simple example,

* We define ' to be what would be observed by a perfect instrument, with the same observing
footprint as the real one.

* The above derivation shows that this "observational" error depends on the model resolution,
and on the interpolation H. It is important to remember this when modelling observational errors
for quality control algorithms; e.g. if y° is a sounding of satellite radiance data, then poor cloud
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we can plot p(3”|x) as a function of x,; and x, - the likelihood ° (figure 3).

Substituting into the Bayesian analysis equation, we get
_ PO°|0pE)
po°)
Ny°|Hx),R) N(x|x>B)
[ [ No°|H).R) Nex|x",B) Jdx

plx|y®)
a7

The product of two Gaussians can (as long as H is linearisable) be reorganised to collect the x

terms into a single Gaussian:

N(p°|Hx),R) N(x|x’B) = Ny°|Hx" R+HBHT) N(x|x%A) (18)

where x“ and A are defined by:

A - B-BHY(HBH’-R)'HB o
x? = x?+BH'EBHT+R) ™ (y°-H(x?))

Substituting (18) in the denominator of (17), the Gaussian in x~inf¢grates to one. "Cancelling the

other Gaussian top and bottom gives:

P = Nxlx2a) - @
This is shown as the posterior pdf in figure 3.
2.5 Log(probabilities) - Penalty Functions

The Bayesian analysis equation, with its product of probabilities, is hard to handle. For variational

algorithms, it is mote convenient to take minus the logarithm. The equation then becomes:

assumptions can lead to gross errors in the radiative transfer model H; these are manifested as gross
"observational" errors.

> It does not integrate to one over x, so it is not a probability distribution function.

259



LORENC, A. C.: QUALITY CONTROL

px|y% = pi|y’NG P(Gly°) + px|y°NG) PG|y
= Nx|x®B) P(G|y° + N(x|x°A) P(G|y°)

@27)

The posterior pdf is the weighted sum of two Gaubssian, corresponding to accepting or rejecting the
observation. The weights given to each are the posterior probabilities of G and G. When the peaks
are distinct, these correspond to the areas under each. The results of allowing for gross errors in
this way can be quite dramatic, even if P(G) is small. Figure 5 shows the equivalent of figure 2,
with errors appropriate for pressure observations from ships, which have about 5% gross errors.
When the observation and the background agree, there is little difference from figure 2. But when

they disagree, the posterior distribution becomes bi-modal.

a 3
""" ply = Nly; 4, 4 .95 + .02¢ .05 preevply) = Niys 8, 4k 85 + 02x .05
== plx) = Nix; 0, 9 ===plx) - Nx; 0, 9
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Fig.5. As figure 2 for an observation with a 5% chance of gross error.

Figure 6 shows the same examples in the log(probability) form of figure 4. The observational

penalty is not quadratic; it has plateaus away from the observed value. Adding this to a quadratic

background penalty can give multiple minima.
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Fig.6. As figure 5 for -log(probabilities).

2.7 What is the best analysis

To approach this objectively, we have to define how much it costs us to be wrong, or alternatively
how much we benefit frmﬁ being nearly right. 1f we have a quadratic cost function, then the best
analysis is the mean of the posterior pdf. If we have a spike (delta function) benefit function, the
best analysis is at the maximum of the posterior pdf. Probably the best simple model is between
the two: a Gaussian shaped benefit function such that analyses close to the truth are useful, while
those a long way from correct are equally worthless. A Gaussian shaped benefit function, with
width specified by pseudo-covariance C, has the advantage of facilitating algebraic calculation of

the benefit; convolving it with the posterior pdf from (27) we get:
benefit(x) = N(x|x®B+C) P(G|y°) + Nx|x%A+C) PGly©) (28)

Figure 7 shows the expected benefit calculated using (28), for different values of C. C=0
corresponds to a delta function benefit; the curve is identical to the posterior pdf (similar to those
shown in figure 5; this example is for a more accurate but equally unreliable observation). The

analysis value which give the greatest expected benefit is shown by x, and corresponds to the
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maximum of the posterior pdf. In practice, an analysis which is as accurate as the background x”
is still of some use. So it is more plausible that the width of the benefit function should be similar
to that of the background pdf (which has variance 9 in our example). The expected benefit curve
for this case has its maximum at +. It has chosen the peak from the posterior pdf which has the
largest area (0.61 compared to 0.39). Finally, if we expand the width of the benefit function so that
it is large compared to the separation between the peaks, then we get the curve with maximum at

1. For very large C the gaussian benefit function becomes a quadratic, and the maximum is

always at the mean value of the posterior pdf. .

Prior probability of gross error PE)= .05
Postertor probability of gross error PGly= .61

5 :
e ply) = Ny; 10, .5)
b = N 0,9 :

4 benefit (C= 0)

wpmm Honef Lt (C= 9

Fig.7. Expected benefit as a function of analysed value, from a case similar to those in figure 5.
Curves are plotted for three different benefit functions, with widths C=0 (maximum at X),
C=9 (maximum at +), and C=100 (maximum at [1).
Shown for reference are the background pdf (with x’=0, B=9), and the observational pdf
(with »°=10, R=0.5).
The prior probability of gross error was assumed to be P(G)=0.05, and the posterior
probability was calculated to be P(G|y”)=0.61.
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3  PRACTICAL METHODS OF QUALITY CONTROL

3.1 Individual Quality Control

Lorenc and Hammon (1988) extended (26) to two observations with independent gross errors, and
background values. This can be treated exactly by first calculating P(G,|") for each, using (26),
and then modifying them by a buddy check factor:

o o 0 P OP ;
P(G1]Y1n)’2) =P(G1|}’1) Pi(;%h‘yo%z (29)
1 2
o 0 0 P OP Y
PG, Iy?5) = PG, ly) —% 30)
1 2
where
o P [ _ _ 0 = ry
P(yl) (yz) _ l—P(Gl Iylo)P(Gzlygo) 1- PCYI nyz lGlﬂGZ) (31)

Py, Ny, P! |G)Py;|G)

The algebra, and computation, to extend this exact calculation to 7 observation goes as 2". However
it has been found in practice that sequentially applying the two observation buddy check is a

reasonable approximation. (See Lorenc and Hammon 1993 appendix C for more details of the

pairwise buddy check). Finally, each observation 7 is used if P((_;i y)>P(G;|y%. This is a

generalisation of the decision made by the C=9 curve in figure 7.

The main weakness of this approach as implemented is its sequential nature. Nearby observations
are not combined before checking an observation, but rather they are used one-by-one. So the way
they support, or contradict, each other is only approximately allowed for. Note that for each
observation the posterior pdf is split into two different peaks®, leading to independent decisions for

each observation which may not be consistent, as we shall see in 3.4.

8 actually, they may not be distinct peaks.
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3.2  Simultaneous Quality Control

Lorenc (1981) introduced the Optimal Interpolation (OI) analysis method used operationally at
ECMWF (until replaced by 3DVAR). This performs an explicit solution of a quadratic variational
problem. The solution is calculated in boxes for as many observations as we can afford to handle

at once.

A key feature of the ECMWF system is the use of the same methodology for quality control.
Lorenc (1981) shows how, once the inverse of the Ol matrix M (=HBH™+R in our current notation)
has been calculated, then it is possible with relatively few operations to solve the system of
equations involving a smaller matrix omitting one (or a few) observations. He used this to check
each observation in turn against a value analysed using all the other observations. An observation

fails if:

@2y > TV,+V) (32)

where 3, with error variance ¥, is the analysis obtained using the OI equations, at the position of
the observation being checked, omitting the observation being checked and other rejected

observations.

In the Lorenc (1981) paper the tolerance (7) was set in a somewhat empirical manner t0 4.0. When,
as the scheme developed, we tried to account for the better quality of weather ship observations by

reducing their observational error V,

73

we found that this resulted in more being rejected:- not what
we wanted. (It was this behaviour, and the subjective tolerance in what was otherwise an objective

analysis, that induced me to study the Bayesian approach.) It is shown in Lorenc and Hammon that,

to match the criterion P((—;i ly9)>P(G;|y°), the tolerance T should be given by:

P ()
! Z'D{P«?)

. k* (33)
h]{Zﬂz(Vlﬁ Va)}

where k is the probability density of observations with gross error, as defined in (27). T is shown

in figure 8.
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In applying this method, observations have to be either included in, or excluded from, the analysis.
While an observation is checked, the decisions on other observations are frozen. The ECMWF
scheme follows a pragmatic approach of rejecting the worst, then rechecking the others, iteratively

until no more fail.

50— K'X(VO+VB) = 0.0085
P -~ .
~~ seesees K'X(VO+VB) = 0.0340
LI, .. —~— .
..... - -_—— = KX(VO+VB) = 0.0021
40+ ‘.
+4]
S 30F
]
° -
c
9
g 2.0 |
QO
g
1.0 - ‘ \‘
0.0 | | | ll
0.0001 0.001 0.01 0.1 1.0

Prior probability of gross error

Fig.8. Rejection tolerance T, plotted against prior probability of gross error (from Lorenc and
Hammon 1988).

Ingleby and Lorenc (1993) present equations for extending the Bayesian approach of Lorenc and
Hammon. From the »n gross error events G, they define 2" new combined events C, each

corresponding to a particular set of rejections:
C, - GNG, , .. NGNG,

C, = GG, , . N\GNG,
C, = GNG, , .. NG,NG, (34

C,.,-GNG  .NGNG,

oy T My

Bayes theorem can be applied to each of these combined events:
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Py°|CHPC
P(Ca |y0) = 1 (y | a) ( a) (35)

Y Pp°|C)P(C,)

a’=0

Note that the denominator is the same in all the expressions; if we only want to find the most likely
C, it need not be evaluated. Evaluation of one P(3’|C,) involves evaluating only a single multi-
variate Gaussian. In fact the ECMWEF Ol method (with Bayesian tolerance 7) is deciding which
is more likely out of two C, which differ just by the observation being tested. Because it is judging

between sets of quality control decisions, we call this approach Simultaneous Quality Control.

The C, can be regarded as being the vertices of an n-dimensional hyper-cube. The method starts
from a first-guess set of rejections, and tests each observation in turn. This is equivalent to
searching for the 1ﬁost probable of the adjacent vertices. It then iterates, re-testing some vertices
adjacent to the new C,. This strategy is like the SIMPLEX algorithm of linear programming, but

applied to a non-linear problem.

The main weakness of this method as implemented is that its cost prohibits evaluation of more than
a few of the possible combinations. The SIMPLEX-like algorithm is not guaranteed to find the
absolute maximum, but depends on a good initial estimate as to which observations are correct.

This is illustrated in section 3.4.

3.3 Variational Analysis with non-Gaussian Errors
It is possible to use our model of observational errors directly in a variational algorithm. Dharssi
et al. (1992) did this for simulated windlidar observations. Instead of the quadratic

Yo(y°-H(x)) (E+F) ' (3°-H(x)), the observational penalty becomes (for diagonal E+F):

J, = Y -ulNG? | Hx.V, )PG)+kP@G) (36)

where V., (=E,+F,) is the observational error of 7 if it has not a gross error.

Differentiating this gives:
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aJ, ) (y,-"—yl-)J N<yi0|yiaVr,.)P(Gi) 37

ayi Vri IN(yio |yi’ Vr )P(Gl) +klP(Gl)

i
where y; is the element of H(x) corresponding to x interpolated to the ith observation position. The
first term is just what we get if the observation error is Gaussian, as in variational methods with a
quadratic penalty function. The term in braces is equal to the probability that observation i has not
a gross error, given that x is exactly correct. So for each iteration u of the descent algorithm, all
one has to do to allow for gross errors is to replace the observational error for each observation in

the formulae for the standard gradient of a quadratic penalty by:

v
E oy = —— (38)
PGy NH(x,,))

i.e. the observational error variance should be inflated by one over the probability (given the current
best estimate x;,)) that the observation has not a gross error.

Note that this only gives the correct gradient of J,; it does not give the correct penalty (for which
we need (36)) nor the correct second derivative. In general, analysis error estimates based on the
second derivative, valid for Gaussian distributions (e.g. in (19)) will be over-optimistic for long-

tailed distributions.

We saw in figure 5 that if errors are non-Gaussian, the penalty function is non-quadratic and can
have multiple minima. So the end point of a descent algorithm iteration will depend on the first-
guess. In a set of variational assimilation experiments with a one-dimensional shallow water model
and its adjoint, I found that (for the example studied) the first-guess had to be very good to get

convergence to the best solution (Lorenc 1988, figure 13).

Dharssi et al. (1992) studied various approaches for overcoming this problem for a simple example
with two observations, so that the penalty function can be plotted as contours. Ordinary descent
algorithms did not always find the lowest minimum (figure 9). Better results could be obtained
by artificially increasing the assumed observational error for early iterations, slowly reducing it to
its true value. Alternatively, one can artificially decrease the prior P(G) to zero for early iterations.

Neither approach always worked. In fact we saw in 2.7 that the extremum of the posterior pdf is
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not necessarily the best analysis, particularly for observations with low observational error but some
gross errors. Increasing the observational error makes the modified posterior pdf more like the
expected benefit curve for C=9 shown in figure 7. In simulations using rather dense observations
with large probabilities of gross error (up to 50%), the method with increased observational error

worked satisfactorily.

22\ W

(a) . (b)

(va—b2)/os '(Vz—bz)/ﬂ'a

—4 —2 0 2 4

(Vz—“bz)/ Oe
Figure 7. Contours of the penalty function (11) when only two observations are present. The observation
values are given by o, — b, =4 0g, 0, — b, = —3 0 and the background error correlation between the two

observation points is set to 0.5. The observation error standard deviation oo = 0.5 o5 and a; = b;. (a) displays

the contours when the initial probability of gross error P, = 0.0. (b) and (c) display the contour maps when P,

is 0.1 and 0.5 respectively. The tracks superimposed (dots connected by solid line) represent the path taken

by the iterative scheme (12) through this space, for four different starting points which are at 0,0), (-3,0),
(—3,4) and (0. 4).

Fig.9. Fig.7 from Dharssi et al. (1992).

The main weakness of this method is its use of a variational descent algorithm in situations where
a discrete decision between distinct possibilities is needed. It is dependent on a good starting point
initial guess. Another theoretical weakness is its search for the maximum of the posterior pdf,
rather than the estimated benefit. We saw in 2.7 how an accurate but unreliable observation can
give a tall but narrow peak, which is not actually the best analysis. This effect can be partially

alleviated by artificially increasing the observational error.
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Fig 10 Posterior pdf for collocated observations differing by -8mb and -6mb from the background.
The prior P(G)=.05 for each, the error variance of good observations is V,=1.0mb?, the
background error variance is ¥,=(1.5mb)? and the probability density of observations with
gross errors is k=.043mb™. (from Ingleby and Lorenc 1993).

3.4 Comparison

Ingleby and Lorenc (1993) compared Individual Quality Control (IQC), Simultaneous Quality

Control (SQC), and non-Gaussian Variational Analysis (VAN) for some simple examples. One is

shown in figure 10. There are two observations and thus four combinations C,, each corresponding

to a dotted Gaussian curve in figure 10. The table below shows their posterior probabilities.

G, G, G,UG,
G, 393 191 584
G, .003 413 416
G,UG, 396 604 1.0

The most likely combination is for them both 1o be correct: the table shows P(élméz)=.4l3. This
is the SQC result. Note that the simplex-like search algorithm would not work in this case: if we

start at G;NG,, both C.}-lmGz and G]méz are less likely, so we do not get to élméz.

To get the probabilities for IQC we have to sum rows and columns: the table show P(él)=.416,
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P(éz)=.604. So observation 1 probably has a gross error, and observation 2 is probably correct.
Note however that if we make these decisions individually, and then draw the analysis assuming

Glméz, then we are choosing a rather unlikely combination.

The variational analysis method chooses the highest point on the solid curve in figure 10. Note that
a descent algorithm starting from the background would not have found this. If we convolve in a
benefit function, as in 2.7, the best analysis will be near the mean of the larger peak in the posterior

pdf, i.e. between the IQC and VAN/VQC/SQC results.

4 MONITORING

To the manager of a manufacturing company, Quality Control has a different meaning to that we
have implied so far; he wants to know about and prevent errors. In NWP we call the equivalent
process "monitoring". The purpose is to collect statistics on the performance of observing and

processing systems, to detect systems that are not performing as expected, and to feed this

information back so the deficiency is corrected at source. To do this we need:

- a comprehensive database of basic and processed observed values, independent estimates of
the same quantities, and parameters affecting the processing

- software for categorising, sorting, and analysing the database

- effort to try categorisations and look for "unexpected" behaviour

- communications, willpower and persistence, to get errors from stages out of your direct
control rectified.

Design of the monitoring system is as important as design of the data-assimilation scheme; it should

not be added on as an afterthought. Monitoring by NWP centres of the operational World Weather

Watch observations is probably the major cause of the significant increase in observational quality

which has been seen in radiosondes (S. Uppala, personal communication), ships (C. Heasman,

personal communication), and cloud track winds.
Another important product of monitoring is a good description of the observational error

characteristics. If we are using the gross-error model, we need to know the prior probability of

error, and the error distributions of gross-error and of "good" observations. Without these, the
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quality control is not objective °. Lorenc and Hammon (1988) showed how the statistics of
observations processed by their quality-control scheme could be used (with some added

"judgement") to "bootstrap” the assumed prior distributions.

For some observation types, more complicated error models are called for. For instance there are
many different ways that a radiosonde temperature and geopotential report can be corrupted.
Gandin er al. (1993) have devised a "Comprehensive Quality Control" scheme which looks for
sixteen. Because of the redundancy of information in a radiosonde message, it is often possible to

correct errors.

Many observations have bias errors, which monitoring statistics are useful in detecting and
correcting.  For instance many ships and buoys have mean surface pressure errors which persist
until the instrument is recalibrated; the Met Office reutinely updates a list of corrections for them.
The "observational” errors in satellite radiance scundings are biassed by errors in the radiative
transfer calculations used in H; all successful methods for using the radiances use empirical bias

corrections obtained from a monitoring process.

? by "objective" I mean more than the automatic application of ad hoc rules, rather that the rules
themselves have some statistical foundation.
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