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Summary: The ability of four-dimensional variational assimilation (4DVAR) of noisy
observations in a 3-layer quasi-geostrophic model to improve predictability is described.
It is found that forecast lead times are extended by 5 days when observations are
assimilated over a time interval extending 10 days into the past, even for weather regime
. transitions. For such extended assimilation time intervals, the assimilation errors are
mostly concentrated on the unstable manifold (leading Lyapunov vectors) for the system.
The extent to which this result holds for different observational error structures is studied.
It is found that 4DVAR drastically reduces observational errors comprised of sirgular
vector-type components that grow rapidly in the future, but that 4DV AR is ineffective at
reducing observational errors comprised of Lyapunov vector-type components that have
grown rapidly in the past. An exception to the general rule that 4DVAR readily reduces
singular vector-type observational errors is found. If an observational error projects on
‘the leading singular vector at the end of the assimilation time interval, and the sensitivity
of that singular vector throughout the remainder of the assimilation time interval,
4DVAR does not reduce that error and rapid growth of forecast error may occur,
However, the likelihood of such a scenario occurring is assessed and judged to be
extremely improbable. ‘ : :

1. INTRODUCTION ‘

It is well established that dynamical motions in the extra-tropical atmosphere are
fundamentally chaotic. While this fact imposes an ultimate limit upon useful deterministic
weather forecasts estimated at about two weeks, present performance of numerical weather
prediction models shows that this limit is still far from being reached. Since weather forecasts
depend strongly upon the quality of initial conditions, it is hoped that more accurate
specification of those conditions will lead to substantial gains both in the quality of short

range forecasts and extension of the range of useful forecasts.

One obvious route to better forecast initial conditions is improving how observational data are
assimilated into numerical weather prediction models. It is widely agreed that advanced data
assimilation techniques should utilize. data better than current statistical interpolation
techniques (Ghil and Malanotte-Rizzoli, 1991). Necessarily, this includes not only extfacting
as much dynamically relevant information from the data as possible, but also filtering out the
spurious information, i.e., the noise. Recently, one particular advanced technique — four-
- dimensional variational assimilation of data (4DVAR) — has been studied intensively. This

interest was spawned by the work of Lewis and Derber (1986), Le Dimet and Talagrand
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(1986), and Talagrand and Courtier (1987), who showed that it is feasible to perform 4DVAR
with fairly realistic models. ADVAR differs from sequential algorithms, such as variants of
Kalman filtering (Kalman, 1960; Ghil and Malanotte-Rizzoli, 1991), as it seeks the best
nonlinear estimate of the flow by direct explicit minimization of a scalar function measuring
the misfit between the observations and the model solution over some finite time interval T,
(the assimilation time interval). The misfit, or cost function to be minimized is typically the
sum of the squared observation-minus-model differences, weighted by the inverse covariance

matrix of the observational errors, measured using an appropriate inner product.

‘While the potential of 4DVAR as an assimilation tool has attracted much attention,
improvements in predictability that go along with its application have not been extensively
examined. In this note, we describe to what extent 4DVAR of noisy observations in the 3-
layer quasi- geostropmc QG) model of Marshall and Moltem (1993) can improve
predictability. The assimilation experiments described herein are quite stralghtforward The
perfect model assumption is made throughout; as such, ‘observations’ are generated every 6
hours arbitrarily far baék in the past by adding noise to the geopotential height field of a
model reference solution, and these observations are provided to 4DVAR for assimilation and
forecasting. Our approach is t0 extend the assimilation time interval ever farther into the past,
and quantify how the predictability of the system changes. However, it is well known that
extending the assimilation time interval under 4DVAR for chaotic systems is fraught with
danger, as secondary minima in the cost function emerge for sufficiently long assimilation
time intervals T. (Li, 1991; Gauthier, 1992; Miller et al., 1994: Pires et al., 1996). These
seéondary minima can ‘trap’ the assimilated model state away from the true best estimate of
the flow. To avoid difficulties associated with the emergence of multiple minima as the
assimilation time interval is extended farther into the past, the quasi-static variational
assimilation (QSVA) algorithm described in Pires et al. (1996) is applied when the
assimilation time interval is longer than 4 days. The results below summarize two works

currently under review (Swanson et al. 1997ab).

2. PREDICTABILITY

As a first step towards understanding how much 4DVAR can improve predictability, we
consider assimilation of observations in the MMO3 QG model that have errors consisting of
Gaussiah distributed white noise with standard deviation of (60,40,20) m in the (200,500,800)
mb QG geopotential height fields, respectively. These observations are provided uniformly
over the globe every 6 hours. Since the observational error is white with respect to the
squared QG geopotential height norm, or equivalently, the squared streamfunction norm, we

formulate the adjoint in that norm.
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Fig.1 Onset and maturation of the Atlantic blocking event studied herein. The
contoured variable is 500 mb QG geopotential height Z = fy#/g. Contours
are every 50 m, with the 200 m contours darkened.
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2.1 Weather regime transitions ; , ,

For a first example, we consider whether 4DVAR can improve prediction of weather regime
transitions. Weather regime transitions, such as from a zonal to a blocked flow, are well
known to be difficult to predict operationally (Tibaldi and Moiteni, 1990). B»ased upon the
behavior of simple dynamical syStems such as the Lorenz (1963) system, it has been argued
that predictability js difficult because the flow is inherently more unstable 4 to small
perturbations during such transitions (Palmer, 1993). This instability can be quantiﬁed'in any
number of ways; growth of finite time singular vectors (Molteni and Palmer, 1993), local
Lyapunov vectors (Trevisan and Legnani, 1995), or flow .sensitivity' measured by the growth
of perturbations ‘optimallj’ conﬁguréd to cause regime transitions (Oortwijn and Barkmeijer,

1995) represent but three relevant measures of that instability.

The synoptic situation we consider consists of the onset and decay of a block in the European-
North Atlantic sector in a QG‘mo_del reference solution. Several time slices of the 500 mb
height field for this ref’erencev solution are shown in Fifgure' 1, reveaiing the onset and
maturation of an Q-type block in the North Atlantic between days O and 10. - After déy 10, the
block decays rapidly, with the flow returnihg to near climatological values by day 15.
Assimilation experiments for this situation are constructed as follows: to the 10 days
preceding day O of this solution, we generate 20 different observational ‘realiﬁeé’ ‘by adding
Gaussian white noise error tb the reference solution. These observations are provided every 6
hours, and assimilation is performed over the time interval [-T,,0] for T.=0, 2, and 10 days
for each realization of the observational noise. The QSVA algorithm of Pires et al. (1996) is
used when T, = 10 days. -

........

Fig.2 Geopotential height anomaly pattern Zz used to quantify the skill of regional
prediction of weather regime transitions for the 20 manifestations of
observational error. The contour interval is 25 m.
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To measure the regional forecast skill, following Liu (1994) we define a blocking index by
introducihg the QG geopotenﬁal height anomaly pattern ZB shown in Figure 2. This pattern
was constructed by taking the low pass QG geopotentizﬂ height anomaly at the peak of the
block, and Zeroihg out that anomaly everywhere but in the European-North Atlantic sector,
Given this pattern, we can then define the blocking index |
C =<Z2Zg>/<ZpZp>, )]

where Z = fyy/g is the instantaneous 500 mb geopotential héight field. We arbitrarily
normalize C to vanish at day 0 and to have a value of unity at day 8 for the reference model
solution. The vanablhty of C with time for each realization of the observatlonal error

provides a quantltatlve measure of the skﬂl of regional blockmg prediction.
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Fig.3 Dependence of the forecast anomaly coefficient C upon T, for the 20-
realizations of observational error. (a) T. = O days, (b) 2 days, and (c) 10
days. In all the figures the solid line is the anomaly correlation coefficient
of the reference solution, and the impulses are the individual forecast
realizations.

Examination of the forecast values of C for the 20 realizations of the observational error
reveals the power of 4DVAR to improve the predictability of weather regime transitions. For
T. = 0 days (no assimilation), Figure 3(a) shows that neither the blocking onset nor its decay
are well simulated. When the assimilation period is extended to T, = 2 days, Figure 3(b)
shows that the blocking onset is successfully predicted for all but two realizations of the
observational error. However, the spread of the forecasts beyond day 8 indicates rather poor
case-wise predictability of both the timin

eed of the decay of the block, With an
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assimilation period of T, = 10 days, however, both the onset and decay of the block are
captured for all 20 realizations of the observational error. The forecast values of C only
deviate significantly from the reference model soiution for forecast lead times longer than 10
days.

2.2 Average predictability

Applying 4ADVAR with extended assimilation time intervals also can be shown to improve the
average predictive skill of the model. We next consider a 150 day model reference solution,
from which noisy observations are generated every 6 hours as above. A sequential version of
QSVA proposed by Pires et al. (1996) is applied to this time series to quantify the average
predictability during a 100 day segment of this solution, where assimilation and forecasting

are carried out every 12 hoilrs.
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Fig.4 Median values of the (a) squared streamfunction error and (b) enstrophy
error for the 200 forecast set as a function of forecast time and of the
assimilation time interval T,.

Figure 4 shows that extending T. from O to 10 days reduces the median error of the
assimilated state and consequently increases the forecast skill. The error at day O converges
to a level about 70 times smaller than the observational error in the squared streamfunction
norm explicitly minimized by 4DVAR. Perhaps more surprising is the reduction in the
enstrophy error by a factor of 100 over its value when no assimilation is done. This hints that
error reduction by 4DVAR may not be sensitive to the choice of norm used to define the
adjoint. For T, greater than 6 days, the error growth is approximately exponential, with an
error doubling time of approximately 3.5 days. Most impOrtantly, the forecast lead times
increase by 5 days as T, is extended from 1 to 10 days. This suggests that the application of
4DVAR may allow significant advances beyond the current limits of forecast skill in

operational models.
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3. ASSIMILATED ERROR STRUCTURE

The improvements in predictability obtained by extending the assimilation interval are also
marked by a significant change in the spectral structure of the assimilation error at the
forecast initiation time. Figure 5 shows the power spectra of the squzired streamfunction
variance as a function of total wavenumber on the sphere at the forecast initiation time for T,
=0, 1, 2, 4, 6, and 10 days. In addition to the substantial overall decrease in the magnitude of
the error as T, is increased, consistent with Figure 4, the shape of the spectra for long T.
indicates that the error is preferentially reduced at small scales. This is consistent with the
larger reduction in error enstrophy relative to error squared streamfunction as T, is increased.
While this preferential reduction of error at small scales in no way proves that forecast error
- growth cascading from small to large spatial scales during the forecast is unimportant,

4DVAR does reduce error effectively even at scales not heavily weighted by the norm

defining the adjoint.
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Fig.5 Time averaged power spectra of the day O error in the squared
streamfunction norm for the 200 forecast experiments. Individual curves
are labeled by their respective values of T,. Also included are the spectral
structure of the leading Lyapunov vector (L'V) and the spectral structure of
the leading 2-day singular vector (SV) averaged over the 200 forecast
experiments. The amplitude for these vectors is arbitrary.

Also shown in Figure 5 are the average spectra of the leading Lyapunov vector (LV), defined
as the asymptotic error that has grown the fastest in the past (Legras and Vautard, 1995), and
the leading 2 day future singular vector (SV), the error that will grow the fastest over the
future 2 days (Molteni and Palmer, 1993). It is apparent from this Figure that the leading LV
and SV have quite different spectral structures. The spectral power for the L'V peaks at total
wavenumber 5, with its variance tailing off for higher wavenumbers. In contrast, the spectral

power for the leading SV is peaked at the smallest resolved scales of the model. Significantly,

as the assimilation time interval T, is increased
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forecast initiation time tends to resemble the leading L'V. This suggests that the analysis error
under 4DVAR with long assimilation time intervals projects onto the unstable manifold of the

system, anticipated by the theoretical arguments of Pires et al. (1996).

To show this explicitly, we projéct the 200 separate ‘ahalysis errors ét the forecast initiation
time onto the 100 leading LVs 'and 100 leading SVs, respectively, for varying values of T,
and calculate the ratio between the square amplitude of the projection and that of the total
erTor. ‘Figure 6 shows that for short assimilation periods, the ‘variance explained by both the
leading SVs and the leading LVs is quite low. However, as T, increases, the analysis error
projection onto the LVs grows substantially, while no increase of the varlance explamed by
the SVs is observed. Since the unstable manifold of the system is locally spanned by the LVs
associated with a positive Lyapunov éxponént (about 100 in the MM93 QG modél), we
conclude that the analysis errors for T, = 10 days are indeed contained within the unstable
manifold, while the leading SV directions do not represent this analysis error. Since the
unstable manifold of a dynamical system is parallel to its attractor sheets (Eckmann and

Ruelle 1983; see also Legras and Vautard 1995), we also conclude that analysis error under

4DVAR is also parallel to these sheets.
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Fig. 6 Projections onto the 100 leading Lyapunov vectors and the 100 leading
singular vectors as a function of assimilation time T.. The solid lines for
each are the median for the 20 experiments, and the dashed lines are the 5t
and 95" percentiles.

Note, however, that this analysis error. projection onto the leading LVs does not mean that
non-modal singular vector-type growth is totally eliminated. This is because LVs have a
nonzero (albeit small) projection onto the SVs. In order to see that this is the case, we project
these 200 analysis errors at the forecast initiation time for T, = 10 days onto the 20 leading

SVs and 20 leading LVs and integrate the model forward in time from these pr
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Figure 7 shows the average of the squared streamfunction forecast error as a function of lead
time for these projected errors. The small projection of the analysis error onto the leading 2vO‘
SVs at day O grows very rapidly with time, and ‘ihe associated forecast error amplitude is the
same as that of the forecast issued from the non-projected error after day 3. In contrast,
forecasts issued from the analysis error projected onto the leading 20 LVs keep the same
growth rate as the non-projected errors. The mean pattern correlation between the initially
SV-projected forecast errors and the non-projected forecast errors is about 0.7. After day 3,
the forecast error is evidently dominated by the component of the initial error along the
leading SVs. |
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Fig. 7 Projection of 200 analysis errors for T, = 10 days onto the 20 leading LVs
and 20 leading SVs at the forecast initiation time. Also shown is the actual
T, = 10 day forecast error, :

4. 4DVAR AND OBSERVATIONAL ERROR STRUCTURES

To extend our understanding of the extent to which 4DVAR can improve predictability, we
next consider the performance of 4ADVAR for several different observational error structures.
Specifically, we‘consider observational errors that are comprised Qf either the leading SV, or
the leading LV. We define an SV observational error at a time tobs a8 the fastest growing error
structure over the future two day time interval [tos, tons+2 days], while an LV observational
error at a time t,y, is defined as the error structure that grew fastest over the past interval [ty —

T, tes] in the limit t large.

4.1 Distributed errors
First, we consider the case where the observations with either SV and LV errors are uniformly
distributed in time, i.e., every 6 hours an observation is provided to 4DVAR for assimilation

and forecasting. As above, the format of the experiments is to extend the assimilation time
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interval T, to quantify the ability of 4DVAR to reduce these two types of error. The results
below are the median of 20 individual experiments, and for all cases QSVA is used when the
assimilation time interval T, is greater than 4 days to insure convergence to the absolute
minimum of the cost function. Note that the observational errors for these experiments are an
order of magnitude smaller than those of the previous two sections. This keeps the error time

evolution linear throughout the assimilation and forecast time intervals.

Figure 8(a) shows the squared streamfunction error when the observational error at all times
has the structure of the leading future 2 day SV. As expected, with no assimilation the growth
of error is extremely rapid, much more rapid than the growth rate of the leading LV. Rapid
growth of error also occurs for an assimilation time interval of 1 day. However, as T, is
extended to week-long time scales, the growth rate of the error decreases substantially. For T,
= 8 days, this growth rate is essentially indistinguishable from that of the leading LV.
Coupled with a reduction in the assimilation error at the forecast initiation time, this reduction
in growth rate yields forecast errors at day 3 that are more than a factor of 5000 smaller than

the forecast errors when no assimilation is done.
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Fig. 8 Assimilation and forecast error for observations that are -uniformly
distributed in time but have the structure of (a) the leading SV and
(b) the leading LV. '

In marked contrast is the case where the observational errors lie solely in the direction of the
leading LV. Figure 8(b) shows that for this case, increasing T, leads to at most a factor of 4
reduction in the analysis error at the forecast initiation time. As noted above, since
observational errors in the direction of the leading L'V lie on the unstable manifold (attractor)
for the system, 4DV AR is ineffective at reducing such errors. Equally, however, it should be
noted that in contrast with SV error structures, LV errors do not appear to pose the danger of

extremely rapid forecast error growth.
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4.2 Isolated errors ,

While the consideration of distributéd errors shows that 4DVAR readily reduces SV-type
observational error structures, it is of interest to pose an even more stringent test of the ability
of 4DVAR. Consider the following scenario: if day O is the present, we supply observations
with Gaussian distributed white noise error every 6 hours for times before day -4. Then, at
day -4, a ‘disaster’ occurs, and there is no observational data available to 4DVAR until day 0.
At day O, a single observation is made available to 4DVAR; this isolated observation has an
error that lies either in the phase space direction of the leading SV or leading LV,
respectively. The challenge to 4DVAR is to fill in the 4-day gap in the data and to produce an
accurate forecast. To ensure significance, the results shown below are the median of 20

distinct flow states and manifestations of the observational error.
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Fig.9 Assimilation and forecast error in the squared streamfunction norm for the
case where the isolated observation at day O has the structure of (a) the
leading SV, and (b) the leading L'V. Data included in the assimilation for
the various curves is as indicated.

For the case where the isolated day O observational error lies solély in the direction of the
leading SV, applying no assimilation yields a forecast error that amplifies by more than a
factor of 200 over the first 2 days of the forecast. However, applying 4DVAR to the
observations in the distant past (before day -4) as well as the isolated day O observation yields
a forecast error growth rate that is essentially indistinguishable from growth rates fof the
leading LV in the system, and analysis errors at day 0 that are significantly smaller than when
the day O observation is not assimilated. This shows that even when a significant amount of
information about the recent past is missing, 4DVAR can extract the dynamically relevant
information from an observation, effectively ignoring the rapidly growing SV component of

observational error.
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In contrast to the SV case, Figure 9(b) shows that when the isolated day O observation error
has the structure of the leading LV, applying long period 4DVAR does not improve the
forecast compared to the case where the day 0 observatron is not assnmlated This result
afﬁrms the above results and conﬁrms the theoret1ca1 conjecture of Pires et al (1996) that
4DVAR simply cannot reduce observatlonal error prOJectlons in phase space d1rect10ns that

have grown rapldly in the past.
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Fig. 10 Assimilation and forecast error in the squared streamfunction norm for the
rapid growth scenario case. The solid line is error when no assimilation is
done; the dashed line denotes T, = 4 days, and the dotted line T, = 8 days.

4.3 Rapid forecast error growth scenarios

In spite of 4DVAR s impressive ability to reduce SV-type observational errors, it should be

noted that there do exist certain observational error structures that 4DVAR cannot reduce.

Consider an observational error structure consisting of the leading future two day SV at day 0,

and the sensitivity of that SV at every observation time in the past. As outlined by Rabier et

al. (1996), the sensitivity at some time tq, in the past is gix}en by the day 0 error_ihtegrated

backward in time using the adjoint rnodel. Figure 10 shows that extending the assimilation

period to 8 days reduces neither the assimilation error at day O nor the growth rate ofv the
forecast error for this vspecial';type of obseruaﬁoual EIror. HoWever it appears that 4DVAR

only has d1fﬁcu1ty with error structures that resemble thlS specral SV/sensmVlty error qu1te
closely. Blending in a modest amount of white noise (compared to the overall probabrhty of
the noise lymg in this particular phase space d1rect10n) or scrambling the phase of the’
sensitivity with time w1thm the assimilation time 1nterva1 both eliminate thlS rapidly growmg
forecast error. Hence, it appears that this SV/sensitivity error structure is anomalous, and that

in general 4DV AR can reduce almost all rapidly growing SV-type errors.
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5. CONCLUSIONS

Within the perfect model setting, 4DVAR significantly improves the ‘quality of the
assimilated state and substantially extends the lead times for useful forecasts when
observations are assimilated over time scales on the order of one week. For the MM93 QG
model, the improvement in the assimilated state estimate saturates at a level about 2 orders of
magnitude smaller than the observational error when the assimilation time interval is extended
to 10 days, and forecast lead times are extended by 5 days. This suggests that significant
improvements in both assimilation quality and forecast skill may still be possible compared to
their respective levels in current operational models. Long assimilation time interval 4DVAR

appears to provide a viable route by which such improvements can be obtained.

Equally important to improving forecast quality is the fact that 4DVAR is particularly
efficient at reducing errors in phase space directions that have not amplified in the past, ie.,
those directions that do not lie on the unstable manifold of the system. This is particuarly true
for observational errors that project in rapidly growing singular vector phase space directions
that might cause poor forecasts under current analysis schemes. Insofar as such singular
vector-type errors comprise a significant portion of actual observational errors, the application
of 4DVAR to produce highly accurate forecasts in operational weather prediction schemes of
the future appears promising.
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