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1. INTRODUCTION

Numericalweathepredictionis generallyperformedoy numericaintegrationof thehydrodynamiequationgov-
erningatmospherianotions.Therefore the differentialequationgaking a grid-pointmodel,for example,areap-
proximatedby finite differenceequationsappliedto a grid of finite volumes.In contrasto theoriginal differential
equationswhich describethe whole spectrumof atmospherianotions,the finite differenceequationsof a grid-
point modeldescribeonly thosescaleswhich arelargerthantwice the grid length. For practicalreasonghe grid
lengthin numericaforecasimodelscannotbereducedrery muchbelov 100km and,therefore atmospheriproc-
esse®n scalessmallerthan100km areexcludedfrom thosemodels However, small-scaldlow affectsthemean
flow as,for instancegonsiderabl@mountof watervapour sensibleheatandmomentumaretransportedy turbu-
lentandconvective motions.The effectsof the subgrid-scalélow onthe meanflow maybeignoredfor shortfore-
castperiodsof upto 1 to 2 days,but they becomancreasinglyimportantfor longerperiodsandmustbeconsidered
in modelsfor medium-rangdorecastsandin general-circulatiomodels.Sincesubgrid-scal@rocessearenotin-
cludedin modelsonly their statisticaleffectson the meanflow canbetakeninto accountThestatisticalcontritu-
tions by the differentprocessemust,therefore be expressedn termsof the large-scalgparametershemseles.
The mathematical procedurev@tved is generally called parametrization.

In thefollowing sectionthe problemof parameterizatiors discussedrom a generalpoint of view, i.e. in relation
to the scales of atmospheric motions.

2. THE SPECTRUM OF ATMOSPHERIC MOTIONS

Atmospherigprocessearegenerallyobseredover a broadspectrumrangingfrom microturtulentflow to plane-
tarywaves.Fig. 1 givesanideaof thecharacteristitime scalesandlengthscalesof severaltypesof atmospheric
processWe noticethatmicroturtulentprocessefiave a characteristitengthscaleof 1 m, cumuluscorvectionl
km, deepcorvection10km, mesoscal@rocesseflik e tropicalcloudclusters)100km andsynopticaldisturbances
1000kmto 10000km. In addition,Fig. 2 shavshow theenegy is distributedspectrallynearthesurface.Thespec-
trumshawn is theclassicakpectrunof horizontalwind speedjivenby vanderHoven(1957).Thespectrums(f)
hasamaximumathighfrequenciegf 150 hours_l) which correspond$o microturlulentflow of lengthscalef
1mtol100m ( f = 1/t isthefrequeng, T istheperiodof oscillation,s(f) isthespectrakenegy density).An-
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othermaximumis foundfor verylongperiods(t = 4 days)whichreflectssynopticadisturbancesA third wealer

maximumappearsata periodof T = 12 h whichis thatof diurnal oscillations.We alsoobsere a broadintenal

of smallvaluesaroundaperiodof T = 30 minwith acorrespondindengthscaleof L = 10 km (! = u (X ) The
smallessscalegesohedin aforecasimodel(L 0100 km) fall into this spectrainterval, sothatthe spectrakregion

aroundthefirst enegy maximumbelongsentirelyto the subgrid-scalef-or forecasimodelsthe spectrainterval of

thelarge-scalaisturbancess of primaryinterest.Therehave beenmary attemptsn the pastto derive the spectral
distribution of kinetic enegy from obsenationaldata,mostrecentlyby ChenandWiin-Nielsen(1978).Theinves-
tigationsshaw thatthekineticenepgy follows closelya—3 power distribution for largewave numbergFig. 3). The
—3powerlaw seemdo bedueto thetwo-dimensionatharacteof thelarge-scaldlow. Three-dimensionasotropic
flow which is typical for the small-scaleurbulent processesn the otherhandshavs a —5/3 power distribution.

Both distributions are valid only for inertial subrange®f the spectrumwherekinetic enegy (or enstroply) is

merelytransferredrom thelargerscalegwhereproductionoccurs)o thesmallerscaleof dissipationTheoretical
aspects related to this problem ardgewed byLilly (1973).
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Figure 1. Characteristic scales of atmospheric processes
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Figure 2. Spectrum of the horizontal winelacity. After van der Hover{1957). Somexperimental points are
shavn on the graph.
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Figure 3. The kinetic engy K for the total atmosphere as a function of a-tlimensional spectral ingérn )
plotted on logrithmic scales. (Afte€Chenand Win-Nielsen (1978)).

3. THE NON-PARAMETRIZED EQUATIONS

In a forecastmodelonly the large-scaleflow canbe explicitly prescribedThe differentialequationsof motion
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must,therefore berewrittenin suchaway thatthetime evolution of the meanflow, asresohedby thegrid, is pre-
scribed. This is achied by @eraging the equations.

For simplicity we consider here processes in dryTdie equations of motion are then

Navier-Stokes equations of motion

A0V, i pv ) = ~Op-pIo -2pQ x v +F 1)
Mass continuity equation
9p -
57 +0py) = 0 ()

First law of thermodynamics

A0e) , 1 pev) = pO+p@ +e @
Equation of state
p = RpT 4
here
= pressure
velocity

density of air

Q © <
I

1_ .
5 = specific volume

¢ = gravitational potential
F = friction

e = c,T = internal energy
Q

€

= rate of accession of heat from external sources
= rate of conversion of kinetic energy into heat by fric

The frictional forceF results from a carergence of viscous momentum flux as
F=00P (5)

whereP is the stress tensor with the components

2_ Ou,, fu; aujD
Pij - H[B ljaxk_@xj+ axiD}

H isthecoeficientof viscosity §,; istheKroneclerdelta(;; = 0 if :#0 andd;; = 1,if ¢ = j)andquantities
involving a repeated inaeare to be summedser the ind.

The rate of coversion from kinetic engy into internal engy due to viscosity is
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e =POMv (6)

(the two dots indicate a double scalar product).

Theequatiorfor thekineticenegy pk = %pvz,theequatiorfor thepotentialenegy p¢ andtheequatiorfor the
internal enagy pe follow from (1) to (5)as

a(gtk) +00pvk+pv—-P/) = —pv¢ + pOy—P O Mv

A89) .+ o 7pvg) = pv g ™

28) 4 1 Hpve) = —p0 v+ PO TV +pQ

From these equations we see that time changes of taeedifkinds of engly result from

1) Corvergence of engyy fluxes across boundaries

Opvk + pv—-P )
0 dpve)
O Opve)

2) Corversions between the tifent kinds of engy

pv ¢
pO v
£ =P0OMv

3) External heating
Q@ (radiatve exchanges and heat conduction through the boundaries of alumte)

Dissipationof eddykineticenegy into heatby viscousflow takesplaceatthesmalleseddiesof themicroturkulent
spectrabubrangeTheirdimensiongsangefrom 1 mmto severalcmandtheirtime periodsarefractionsof asecond.
The viscous flar occurs at thear end of the spectrum shio in Fig. 2, with f » 1000.

The predictionequation®of aforecastmodelarederived by averagingthe equationg1) to (5). Theaveraginggen-
erally applied is the Rmold's aeraging which, for one dimension, &kthe form

_ 1 Ax/2
A = 5 [ Alw+a)d 8)

—Ax/2

Theoriginal value A is thendefinedasthe sumof the averagedvalue A (meanvalue)anda fluctuation A’ (or
eddy \alue)

A=A+A", where A'=0 9)

It is corvenient to introduce also a weighted operator

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 5



3

The general problem of parametrization

»)
1

|
>

and we similarly hee

A=A+A", where A" = pA"
To derive the equations for the mean motion we enage of the follwing rule
pXY = pXY +pX'Y"

The equations for the mean motion fallthen as

(10)

(11)

(12)
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Momentum equation

X0 4 0PV +pvV - p) = -0p-p0 20 %PV (13)
Continuity equation
a_? +00pV) =0 (14)

First law of thermodynamics

a(gte)+D[(ﬁ’e"\T+[W—ﬁ):—ﬁDW—W+ﬁ6+m (15)

Equation of state

T
I
=
goll
=)

(16)

We see that:

Theequationg13)to (15) for themeanmotion V', p ande" have the sameform astheoriginal equationg1) to
(3)for v, p, ande, andfollow simply from thoseby replacingthe variablesby the meanvalues.However, the
equations for the meamle contain additional terms

0oV
0 dpe'v”
pD B/"

which dependntheeddymotion. Theterm —pv”v" in themomentunequatioris calledthe Reynold'sstressand
actsasanadditionalfriction to the averageNavier—StolesstressensorP . Fromtheequationg13) to (15) we can
derive theequationdor thedifferentkindsof enegy. As thekinetic enegy splitsupinto two parts,i.e. thoseof the
mean motion and of the eddy motion

theequatiorfor thekinetic enegy of theeddymotionmustalsobeconsideredTheenegy equationgnaybewrit-
ten as
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(17)
0 LV v°
&%TD'FDE%VT'FVP ~
— = pv@Me¢e +p0O0v -P.OV +pv'v".0Ov
=V (p-pv"Vv"))
0, ~ —
5;(P®) + D Lpve) = pv e 1)
209 2 L
ot = —-pOv +P.0Ov +P..0Ov" +v" Mp
+ |:| E(ﬁfv’e\ + pvuen +pvu)
3)

2
oV (1)
5P 710 \/
= — pv'v'.0v —P..OV" " p

2 V,,2 0O
+ V"p7 _V" PD

O "
+0 v
g d

2
As wasdonefor theenegy equationg7) for thenon-averagedlow, the enegy corversionsbetweerthe different

kinds of enggies can be seen from the equatifihg for the mean fio and for the eddy fle.

In contrasto thedifferentialcasetherearenow explicit corversiontermsfrom thekineticenepgy of themeanflow
to that of the eddy fle and from the eddy kinetic emgrto the internal engy.

1) Dissipative heating due to viscous momentum flux.
2) Generation of tunbent kinetic enggy by mechanical tutbence in a shear flo

3) Thework doneby the turbulent flow againstthe pressuragradient. The largestcontribution comes
from the vertical componenin the boundarylayer asthe pressuregradienttermis relatedto the
turbulent heat flux

0D o s g
w e Ogw"p Dépw

Thus turbulent kinetic enegy is generated/destyed dependingon the turbulent heatflux being
upward or devnward.

4. PRINCIPLES OF PARAMETRIZATION

Consideringhe prognosticequationg13) to (15) for the meanmotion, we arefacedwith the generalproblemof
parametrizationi.e. to determinethe termsdependingon viscosityandon the eddymotion. The problemis gen-
erally sohed in forecast models as folls:

Theviscoustermsarenot takeninto accountasthe sink of kinetic enegy of the meanflow dueto viscousflow is
smallcomparedwith thatresultingfrom thetransferto eddykinetic enegy. Consequentlhthewarmingeffectdue
to dissipation is also géected in the thermodynamic equation.

The eddy terms are generally specified in one of theWfolpthree vays.
1) Eddy fluxes are nglected.
2) Eddy flues are determined by means of Kietheory
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3) Eddy fluxes are specified using higher order closure schemes.

Thefirst schemas oftenusedn barotropicnodels Neglectof theeddytermsin barotropiamodelsseemgustified,
sincethe enegetic corversionsin barotropicflow arereducedo transformationbetweendifferentkinds of me-
chanical enayy. Horizontal difusion is, havever, sometimes included for reason of numerical stability

The K -approachs widely adoptedn baroclinicnumericalforecastmodels.This methodis basedntheassump-
tion thatthe eddyflow yieldsdown-gradientransferof momenturmandsensibleneat. Takingtheeddymomentum
flux for example, we wuld hare

pv'v" = —pK,,0V

whereK,, isthediffusioncoeficientof momentumThe K -theoryis appliedto determineeddyfluxesin thehor-
izontaldirectionaswell asin the verticaldirection.An exampleof the K -approachs givenin thelecturesonthe
parameterization ofertical eddy flugs in the planetary boundary layer

Higherorderclosureschemesisepredictionequationdor theeddyfluxes pu"x" . Theseequationsaresimilarto

theeddykinetic equatiorandcontaintriple productsof eddyvariablesThesetriple productsmustbe specifiedei-

therin termsof the predictedvalues(parametrizeddr again be predicted which leavesthe problemof parametri-
zationat a higherlevel. A hierarcly of higherorderclosuremodelsfor the planetaryboundarylayer have been
given byMellor and Yamada (1974).
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