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1. INTRODUCTION

For aperfectlinearmodelandlinearobsenationoperatorshboth4dVarandthe Kalmanfilter give thesamevalues
for themodelvariablesattheendof the4dVarassimilationwindow, providedthatbothsystemstartwith thesame
covariancematricesat the beginning of the window. The fundamentatifferencebetweenthe Kalmanfilter and
4dVaris thattheformerexplicitly evolvesthe covariancematrix, whereaghe covarianceevolutionin 4dvaris im-

plicit. This meanghatwhenwe cometo performanothercycle of analysisthe Kalmanfilter providesuswith both
a model state (background) and itsadance matrix. 4d& does not prade the coariance matrix.

Theaim of thislectureis to describesomeapproacheto Kalmanfiltereringfor very large systemsParticularem-
phasiss placedon describinghe ECMWF “reducedrank” Kalmanfilter. Thisis underdevelopmentasa possible
replacement for the current 4aiVsystem.

2. WHY ISTHE KALMAN FILTER IMPRACTICAL FOR VERY LARGE SYSTEMS?

The Kalman filter augments the usual equations for the analysis andgtfopayf the model state:

x, = %, + PPHT(R+ HPPHT) " (y — Hx,) 1)
Xp=M(X,)
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with equations which analyse and progiagthe ceariance matrix:

P = P —PPHT(R+ HP’HT) "HP o
P =MP'M" +Q

(Note: To avoid confusinginteger subscriptsdenotinganalysiscycle, the backgroundand forecaststatesand
covariancematriceshave beendistinguishedin Egs. (1) and (2) by subscriptsand superscriptsp and f. Of
course the forecastquantitiesx, and P’ form the backgroundstatex, andcovariancematrix P’ for the next
analysis gcle. The matrixQ represents thefeict of model erroy

For large systemsthe computationakxpenseof the Kalmanfilter is in the analysisandthe propagtion of the co-
variancematrix. Therearetwo expensve operationsFirst, to calculatethe analysiserror covariancematrix, we
mustinvertthe matrix R + HPH" . Secondthe covariancematrix hasto be propagtedin time accordingto the
dynamicsf thetangentinearmodel.This requiregheapplicationof thetangentinearmodelto eachcolumnand
theadjointmodelto eachrow of the (typically 10° 106) covariancematrix. In additionalto the prohibitive com-
putationalkexpensenf theseoperationsthecaovariancematricesaretoolargeto storein currentcomputeimemories.

A full Kalmanfilter hasbeenrun at ECMWF for athree-level T21 quasi-geostrophimodel.Thisis moreor less
thelargestsystemfor which a full Kalmanfilter is computationallyfeasibleon currentcomputersThe computa-
tional costrisesrapidly with thedimensiorof theproblemsincehigherresolutionincreasedoththecomputational
cost of the model, and the number of modelgragons which are required.

For the forseeablduture, therefore the full Kalmanfilter will remaintoo expensve for useasa meteorological
analysissytemfor numericalweathermrediction.We areforcedto approximateln particular we mustfind ways
to reduce the number of igations of the tangent linear model byesal orders of magnitude.

3. THE ENSEMBLE KALMAN FILTER

Theensembl&almanfilter (Evenserl994,HoutekameandMitchell 1998)takesa statisticalapproacho theso-
lution of the Kalmanfilter equationdor the covariancematricesof analysisandbackgrouncerror Theideaof the
methodis to generate statisticalsampleof analysesThisis doneby runningtheanalysissystenseveraltimesfor
a givendate,eachtime usingbackgroundsvhich differ by anamountcharacteristiof backgrouncerror, andob-
senationswhich have beenperturbedoby addingrandomnoisedravn from the distribution of obsenation error.
(Thebackgroundsireproducedy runningshortforecastfrom eachmemberof the precedingensemblef anal-
yses.)

Thedifferencedetweertheanalysesorm a statisticalsampleof analysiserror, whichmaybeusedto estimatehe
covariance matrix of analysis erravithout the need forepensie matrix irversions:

P'= X,(x,)'C 3)

where L represents arvarage ger the ensemble.

By runninga shortforecastfrom eachensemblanalysiswe getanensemblef backgroundsvhich give anesti-
mate of the ceariance matrix of background error:

P’ = Ot (%,)'C @
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The estimatedcovariancematriceshave rank equalto the size of the ensembl€i.e. several ordersof magnitude
smallerthanthedimensiorof thematrix). Thisrankdeficiengy meanghatif wetry to usetheestimatedackground
covariancematrix directly in the analysis,we will generateanalysisincrementswhich lie strictly in the space
spannedy theensemblenembersOnesolutionto this problemis to split theanalysisncremeninto apartwhich
projectsontothe subspacspannedy the ensembleanembersanda partwhich is orthogonal Then,we may use
thestatisticallyestimatedovariancematrixfor theprojectedpartof theanalysisncrementanda staticcovariance
matrix for the orthogonal part.

A secondvayto avoid the problemof rank-deficieng of the covariancematrix is to modify the covariancematrix
in away whichincreaseds rank.HoutekameandMitchell 2000suggesmodifying the estimatedcovariancedy
remaoving spuriouscovariancest large distanceThis hasthe effect of greatlyincreasingherankof the estimated
covariance matrix.

Theensembl&almanfilter hasseveralattractve featureslt is verywell suitedto modernparallelcomputerssince
the membersof the analysisensemblereessentiallyindependenandmay thereforebe run simultaneouslyThe
methodworksby trying to diagnoseheactualcovariancematrix of backgrouncerrorratherthanby explicitly prop-
agatinganapproximateanalysiserrorcovariancematrix. ThismaybeanadwantageOntheotherhand therandom
errorsin thestatistically-estimatedovarianceslecreasenly asthesquare-roodf theensembleize.Also, random
vectors do not prade an optimal subspace forgaining forecast errors.

4. SUBSPACES, PROJECTIONS AND HESSIAN SINGULAR VECTORS

Themostgeneralway to reducethe numberof tangentinearmodelintegrationsrequiredto propagtethe covari-
ancematrix, is to choosesomeow-dimensionakubspacegndto propagtethe projectionof thecovariancematrix
ontothesubspacgn thecaseof theEnsembldalmanFilter, thesubspaceés definedby theensembl®f analyses.)
For therestof the phasespacewe shoulddo somethingsensiblebut cheap For example,we could decideto use
a static (flev-independent) c@riance matrix.

Themostgeneralway to choosea subspacés to chooseasetof K vectorss, which spanit. However, thisis not
enough.We mustalsodecidewhat we meanby projectiononto the subspaceThatis, we mustchoosean inner
productO,.C.

Given aly vectorx , we can define a part which projects onto the subspace:

K
XS = 2 (stk (5)
k=1

and a part which is orthogonal:
Xg = X—Xg (6)

The coeficientsof the projectiona, arecompletelydeterminedoy the requirementhat Xz is orthogonalto the
subspace according to our chosen inner product (i.e[3a,[1= 0 for k =1..K).

Particularly interestingfor the analysisis the setof vectorss,(¢,) attheanalysistime ¢,, which evolve into the
leadingeigervectorss,(T") of theforecaserrorcovariancematrix P’ atsomefuturetime 7. (Typically, we might
take T' to be48hoursaftertheanalysigime.) Thesevectorsareinterestingbecauséor afixednumberof vectors,
theleadingeigervectorsof P arethevectorswhichaccounfor amaximumvarianceof forecaserror Thevectors
s, (¢,) definepreciselythedirectionsin whichwe wantto doagoodjob of analysisf we areto minimizethefore-
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cast error tw days later

Now, we wantthevectorss,(T") to beeigervectorsof theforecasterrorcovariancematrix. But, it is meaningless
to performaneigendecompositioof amatrixwhoseelementsarenotall of thesamedimensionWethereforeneed
to non-dimensionalize things. Let us define non-dimensia@wbrs:

172

s(T) = WY s,(T) (7)

2

whereW"? is a matrix which non-dimensionalizes thaiables.

The corresponding non-dimensional forecast erreaigance matrix is:

Wl/ZPf(Wl/Z)T ®)

We wantthe non-dimensional'ectorsék(T) to betheleadingeigervectorsof the non-dimensionaforecasterror
covariance matrix. That is:

WY (WY &(T) = A, (T) 9)
In terms of the dimensionaévtors, we hee:

P'W s,(T) = A, ,(T) (10)

whereW = (Wl/z)Twl/2 .

Notethattheeigervectorproblemdepend®n our choiceof non-dimensionalizatiol.hechoiceamountgo decid-
ing a way to compare the rela# magnitudes of forecast errors.fBient choices ge different eigewectors.

Having chosera setof vectorsattime 7', we canturn our attentionto theanalysisime ¢, . We wantsmallpertur-
bationsin thedirectionsof thevectorsatanalysistime s, (¢,) , to evolve into perturbationsn the directionsof the
vectorss,(T') . That is, we ant:

Se(T) = My, _ 1 Si(Z0) 11)
WhereMtO _ p represents the tangent linear model. Substituting this into theveienequation ges:
PW M, 7 s,(to) = MMy, 7 $(t0) (12)

Now supposehat modelerroris negligible over the period ¢, to T'. In this case the forecasterror covariance
matrix is related to the analysis errovadance matri¥” through:

T
PP=M, _p PMTy_7 (13)
Substituting this intdeq. (12)gives:
T
My 7 PPM (oW M, 7 S,(20) = Ay My, 7 S,(to) (14)

If we now cancelthe leading My, .7 from both sidesof the equationandthenmultiply by (P’l)_1 , we getthe
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following generalized eigerctor equation:

M7ty WM, 7 S,(80) = A (P") 5,(t0) (15)

This is an equationwe cansolve to determinea few of the leadingeigervectorsusing a variantof the Lanczos
algorithm(Barkmeijeret al. 1998).Thealgorithmrequiresthe ability to calculatethe productsof the matriceson

both sidesof the equationwith arbitraryvectors.This is clearly possiblefor the left handsideof the equation.lt

requiresoneintegrationof the tangentinearandadjointmodels.On theright handside,we usethe factthatin a
variationalanalysissystem,(P")_1 is equalto the Hessiammatrix of the analysiscostfunction, J" . So, for ary

vectorx , we can calculate the produ@®” )_lx as

(P X = J'x= %(DJ(XO+EX)—DJ(XO)) (16)

The \ectorss,(t,) are knevn as Hessian singulaestors Barkmeijeret al. 1999).
Another interpretation of Hessian singulactors is that theare the ectors which maximize the ratio:

.
), = _SHDWs() a7

st (to) (PY) sw(to)

(Anotherway to derive the generalizeceigervector equation,15, is to take the gradientof A, with respectto
s,(¢p) , and to note that ik, is at a maximum, then its gradient is zero.)

Thenumerator sZ(T)Wsk(T) is ameasuref the “size” of thevectors,(T") . Thedenominataris a measuref
the likelihood of an analysis erray,(¢,) , since for Gaussian errors:

l0g(prok(s, (1)) = const— 31 (10) (") " si(to) (18)

In otherwords,the Hessiarsingularvectorsarethe vectorswhich for a giveninitial likelihoodgrow to maximum
“size” attimeT (where “size” is measured By ).

5. THE ECMWF REDUCED-RANK KALMAN FILTER

5.1 The subspace

The ECMWF reduced-raniKalmanfilter is anapproximateékalmanfilter which usesHessiarsingularvectorsto
define a subspace. The filter is based on the adtsmmthat if we define

1
2,(to) = A—kMTto LTWM, 7 S, (to) (19)

: -1 . . . .
then,by equation15, we have z,(¢,) = (P") "s,(t,) . Thatis, the vector z,(¢,) givesthe actionof theinverse
analysis error ocaariance matrix on the Hessian singulactor at initial time.

More generally for ary time t>t,, we may define vectors at time ¢: s,(¢) = My, - s.(t,) and
z,(t) = (1/)\k)MTt ~TWM, _ 1 s,(?). Itis easy to she that these ectors satisfy
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2,(t) = (P'(1)) 's,(¢) (20)

where Pf(t) is the forecast error gariance matrix at time.

In particular by chosingz to bethetime atwhichthebackgroundor thenext analysiscycleis valid, we geta set
of vectorss, (¢) whichwe mayuseto definea subspaceanda setof vectorsz,(¢) whichdefinetheactionof the
inverse of the ng cycle’s background error gariance matrix on the subspace.

Once the Hessian singulagators are knaon, the ectorsz,(¢) ands,(¢) are easily calculated.

5.2 Theinner product

Having chosera setof vectorswith which to definea subspaceye mustnow considemwhichinnerproductto use
to defineprojectionontothe subspaceThis will allow usto partitionary vectorx(z¢) into apartxg(¢) whichlies
in the subspace spanned by the Hessian singetdors, and a pareté(t) which is orthogonal to the subspace.

Consider hw the the initial orthogonal componemnoéves in time. At timeT', we hae:
Xg(T) = M, _ x5(2) (21)
We would like xé(T) to be orthogonalto the vectorss,(7") with respectto somesuitableinner product.The

obviousinner productis definedby the matrix W . Thevectorss,(7") areorthogonalin the sensehatfor j# &
we have:

(5,(T)) ' W(s,(T)) = 0 (22)

Unfortunately this does not lead to a a@mient inner product for use at the analysis time.

However, theHessiarsingularvectorssatisfyasecondrthogonalitycondition.Forary time ¢, <t < T andj # &,
it can be shan that:

(s, (P ) (s,(0) = 0 (23)

This allavs us to define an inner product:

X(6):8 ()= (x@) (P (6) 7 (5,0)) (24)

Suppose we require [Xg(¢),s,(2)U= 0 for kE=1..K. Now, Xs(T) = M, _ pxg(¢) and
Pf(T) =M, TPf(t)Mt _ - So, at time Twe will have:

(T (P (1)) (s,(T)) = 0 (25)

Thus, the evolved vector xé(T) is orthogonalto the evolved Hessiansingularvectorswith respectto the inner
product defined by thewverse of the wlved cwariance matrix.

In fact,we do notknow the covariancematrix Pf(t) , Sowe cannotuseit to defineaninnerproduct.However, we
do have anapproximatiorto it, in theform of thethe staticbackgrouncerrorcovariancematrix B. The ECMWF
reduced rank Kalman filter therefore uses the inner product:
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Figure 1. Streamfunctioron modellevel 39 (approx.500hPa) for the 3 leadingHessiarsingularvectorsfor 03z
15 October 1999. (a)éétors at initial time. (b) &tors at final time, 48 hours later

Meteorological Training Course Lecture Series
0 ECMWEF, 2002 7



Assimilation Techniques (5): Approximate Kalman Filtersand Singular Vectors

3

Xg(£),5:(£) 0= (Xg(2)) BT (5,(2)) (26)

5.3 The background cost function

The ECMWEF reducedrank Kalmanfilter uses4dVar to performthe analysis,but modifiesthe backgroundcost
functionto useaflow dependentovariancematrix for the subspacelefinedby the Hessiarsingularvectors.If we
partition the backgrounddeparturedx into its projectiononto the supspacendits orthogonalcomponentthe
modified background cost function may be written as:

1 T -1 _ 1 T _
Iy = 5(8%s) (P') dxg + (8xg)'B 16x§+§(6x§) B™3x, (27)

Now, we have choserto usetheinner productdefinedby Eqg. (26). Hence the secondermon theright handside
vanishes. The background cost function is therefore pesltfinite. © evaluate the first term, note that:

K K
(P) "oxs = 3 (P 'st) = 3 0,z,(t) (28)
k=1

k=1

where a, are the projection coeficients. (In fact, the ECMWF reducedrank Kalman filter implementsthe
modifiedbackgrounccostfunctionin a somavhat different,but algebraicallyequivalentway. The detailsof the
implementation will not be described here. ¥iage described blyisher1998.)

6. EXAMPLES

Fig. 1 shavsthestreamfunctioratmodellevel 39 (approximately500hPa) for theleadingthreeHessiarsingular
vectorsfor initial time 03215 October1999.A 4dVar Hessiarwasused andthe optimizationtime 7' — ¢, was48
hours. The matrixV was equialent to a dry engy inner product.

In thelectureon 4dVar, it wasshavn thattheincremenigeneratedby anobsenationatthe startof theassimilation
window is completelydeterminedy the staticbhackgrounderrorcovariancematrix. For thereduced-rankKalman
filter, theincremenfor suchanobsenationis determinedy the modifiedbackgroundtostfunction,andtherefore
includesaflow-dependentomponentFig. 2 illustratesthatthisis indeedthecaseFig. 2 (a) shavsacross-section
of the temperaturéncrementgeneratedn 4dVar by a pair of geopotentiaheightobserationsat 500 hPa at the
beaginningof theassimilationwindow. The slightasymmetryof theincrementbon theleft of thefigureis dueto the
effect of orograply (vertical correlationsaredefinedwith respecto modellevels,whereaghevertical coordinate
in Fig. 2 (a) is pressure)Theincrementgieneratedby the sameobsenationsin thereduced-rankalmanfilter are
shavn in Fig. 2 (b). Theincrementto the left of the figure is clearly modified. The obsenationin this casewas
closeto afront, asis shown by across-sectionf potentialtemperaturéFig. 3). Thenegative contoursextendalong
the frontal zone, and the posdicontours are tilted westind with height.
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Figure 2. Emperature increments along latitude 40 N generatedd@$®@ hR height obsestions at the
beginning of the assimilation windo(a) in 4dar, (b) in the reduced-rank Kalman filter
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Figure 3. Cross-sectionf potentialtemperaturalonglatitude40 N correspondindo Fig. 2 . Valueslargerthan
400 K hae not been contoured.
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