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1. INTRODUCTION

For aperfect,linearmodelandlinearobservationoperators,both4dVarandtheKalmanfilter givethesamevalues

for themodelvariablesat theendof the4dVarassimilationwindow, providedthatbothsystemsstartwith thesame

covariancematricesat the beginning of the window. The fundamentaldifferencebetweenthe Kalmanfilter and

4dVar is thattheformerexplicitly evolvesthecovariancematrix,whereasthecovarianceevolution in 4dVar is im-

plicit. Thismeansthatwhenwecometo performanothercycleof analysis,theKalmanfilter providesuswith both

a model state (background) and its covariance matrix. 4dVar does not provide the covariance matrix.

Theaimof this lectureis to describesomeapproachesto Kalmanfiltereringfor very largesystems.Particularem-

phasisis placedondescribingtheECMWF“reducedrank” Kalmanfilter. This is underdevelopmentasapossible

replacement for the current 4dVar system.

2. WHY IS THE KALMAN FILTER IMPRACTICAL FOR VERY LARGE SYSTEMS?

The Kalman filter augments the usual equations for the analysis and propagation of the model state:
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with equations which analyse and propagate the covariance matrix:

(2)

(Note: To avoid confusinginteger subscriptsdenotinganalysiscycle, the backgroundand forecaststatesand

covariancematriceshave beendistinguishedin Eqs. (1) and (2) by subscriptsand superscripts, and . Of

course,the forecastquantities and form the backgroundstate andcovariancematrix for the next

analysis cycle. The matrix  represents the effect of model error.)

For largesystems,thecomputationalexpenseof theKalmanfilter is in theanalysisandthepropagationof theco-

variancematrix. Therearetwo expensive operations.First, to calculatetheanalysiserror covariancematrix, we

mustinvert thematrix . Second,thecovariancematrix hasto bepropagatedin time accordingto the

dynamicsof thetangentlinearmodel.Thisrequirestheapplicationof thetangentlinearmodelto eachcolumnand

theadjointmodelto eachrow of the(typically ) covariancematrix. In additionalto theprohibitivecom-

putationalexpenseof theseoperations,thecovariancematricesaretoolargeto storein currentcomputermemories.

A full Kalmanfilter hasbeenrun at ECMWF for a three-level T21 quasi-geostrophicmodel.This is moreor less

thelargestsystemfor which a full Kalmanfilter is computationallyfeasibleon currentcomputers.Thecomputa-

tionalcostrisesrapidlywith thedimensionof theproblemsincehigherresolutionincreasesboththecomputational

cost of the model, and the number of model integrations which are required.

For the forseeablefuture, therefore,the full Kalmanfilter will remaintoo expensive for useasa meteorological

analysissytemfor numericalweatherprediction.We areforcedto approximate.In particular, we mustfind ways

to reduce the number of integrations of the tangent linear model by several orders of magnitude.

3. THE ENSEMBLE KALMAN FILTER

TheensembleKalmanfilter (Evensen1994,HoutekamerandMitchell 1998)takesastatisticalapproachto theso-

lution of theKalmanfilter equationsfor thecovariancematricesof analysisandbackgrounderror. Theideaof the

methodis to generateastatisticalsampleof analyses.This is doneby runningtheanalysissystemseveraltimesfor

a givendate,eachtime usingbackgroundswhich differ by anamountcharacteristicof backgrounderror, andob-

servationswhich have beenperturbedby addingrandomnoisedrawn from thedistribution of observationerror.

(Thebackgroundsareproducedby runningshortforecastsfrom eachmemberof theprecedingensembleof anal-

yses.)

Thedifferencesbetweentheanalysesform astatisticalsampleof analysiserror, whichmaybeusedto estimatethe

covariance matrix of analysis error, without the need for expensive matrix inversions:

(3)

where  represents an average over the ensemble.

By runninga shortforecastfrom eachensembleanalysis,we getanensembleof backgroundswhich give anesti-

mate of the covariance matrix of background error:

(4)
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Theestimatedcovariancematriceshave rankequalto thesizeof theensemble(i.e. several ordersof magnitude

smallerthanthedimensionof thematrix).Thisrankdeficiency meansthatif wetry tousetheestimatedbackground

covariancematrix directly in the analysis,we will generateanalysisincrementswhich lie strictly in the space

spannedby theensemblemembers.Onesolutionto thisproblemis to split theanalysisincrementinto apartwhich

projectsontothesubspacespannedby theensemblemembers,anda partwhich is orthogonal.Then,we mayuse

thestatisticallyestimatedcovariancematrixfor theprojectedpartof theanalysisincrement,andastaticcovariance

matrix for the orthogonal part.

A secondwayto avoid theproblemof rank-deficiency of thecovariancematrix is to modify thecovariancematrix

in awaywhich increasesits rank.HoutekamerandMitchell 2000suggestmodifying theestimatedcovariancesby

removing spuriouscovariancesat largedistance.Thishastheeffectof greatlyincreasingtherankof theestimated

covariance matrix.

TheensembleKalmanfilter hasseveralattractivefeatures.It is verywell suitedtomodernparallelcomputers,since

themembersof theanalysisensembleareessentiallyindependentandmaythereforeberun simultaneously. The

methodworksby trying todiagnosetheactualcovariancematrixof backgrounderrorratherthanbyexplicitly prop-

agatinganapproximateanalysiserrorcovariancematrix.Thismaybeanadvantage.Ontheotherhand,therandom

errorsin thestatistically-estimatedcovariancesdecreaseonly asthesquare-rootof theensemblesize.Also, random

vectors do not provide an optimal subspace for explaining forecast errors.

4. SUBSPACES, PROJECTIONS AND HESSIAN SINGULAR VECTORS

Themostgeneralway to reducethenumberof tangentlinearmodelintegrationsrequiredto propagatethecovari-

ancematrix,is to choosesomelow-dimensionalsubspace,andto propagatetheprojectionof thecovariancematrix

ontothesubspace.(In thecaseof theEnsembleKalmanFilter, thesubspaceisdefinedby theensembleof analyses.)

For therestof thephasespace,we shoulddo somethingsensiblebut cheap.For example,we coulddecideto use

a static (flow-independent) covariance matrix.

Themostgeneralway to chooseasubspaceis to chooseasetof vectors whichspanit. However, this is not

enough.We mustalsodecidewhat we meanby projectiononto the subspace.That is, we mustchoosean inner

product .

Given any vector , we can define a part which projects onto the subspace:

(5)

and a part which is orthogonal:

(6)

Thecoefficientsof theprojection arecompletelydeterminedby therequirementthat is orthogonalto the

subspace according to our chosen inner product (i.e. that  for ).

Particularly interestingfor theanalysisis thesetof vectors at theanalysistime , which evolve into the

leadingeigenvectors of theforecasterrorcovariancematrix atsomefuturetime . (Typically, wemight

take to be48hoursaftertheanalysistime.)Thesevectorsareinteresting,becausefor afixednumberof vectors,

theleadingeigenvectorsof arethevectorswhichaccountfor amaximumvarianceof forecasterror. Thevectors

definepreciselythedirectionsin whichwewantto doagoodjob of analysisif weareto minimizethefore-
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cast error two days later.

Now, wewantthevectors to beeigenvectorsof theforecasterrorcovariancematrix.But, it is meaningless

to performaneigendecompositionof amatrixwhoseelementsarenotall of thesamedimension.Wethereforeneed

to non-dimensionalize things. Let us define non-dimensional vectors:

(7)

where  is a matrix which non-dimensionalizes the variables.

The corresponding non-dimensional forecast error covariance matrix is:

(8)

We wantthenon-dimensionalvectors to betheleadingeigenvectorsof thenon-dimensionalforecasterror

covariance matrix. That is:

(9)

In terms of the dimensional vectors, we have:

(10)

where .

Notethattheeigenvectorproblemdependsonourchoiceof non-dimensionalization.Thechoiceamountsto decid-

ing a way to compare the relative magnitudes of forecast errors. Different choices give different eigenvectors.

Having chosenasetof vectorsat time , wecanturnourattentionto theanalysistime . Wewantsmallpertur-

bationsin thedirectionsof thevectorsatanalysistime , to evolve into perturbationsin thedirectionsof the

vectors . That is, we want:

(11)

where  represents the tangent linear model. Substituting this into the eigenvector equation gives:

(12)

Now supposethat modelerror is negligible over the period to . In this case,the forecasterror covariance

matrix is related to the analysis error covariance matrix  through:

(13)

Substituting this intoEq. (12) gives:

(14)

If we now cancelthe leading from bothsidesof theequation,andthenmultiply by , we get the
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following generalized eigenvector equation:

(15)

This is an equationwe cansolve to determinea few of the leadingeigenvectorsusinga variantof the Lanczos

algorithm(Barkmeijeret al. 1998).Thealgorithmrequirestheability to calculatetheproductsof thematriceson

bothsidesof theequationwith arbitraryvectors.This is clearlypossiblefor the left handsideof theequation.It

requiresoneintegrationof thetangentlinearandadjointmodels.On theright handside,we usethefact that in a

variationalanalysissystem, is equalto theHessianmatrix of theanalysiscostfunction, . So, for any

vector , we can calculate the product  as

(16)

The vectors  are known as Hessian singular vectors (Barkmeijeret al. 1999).

Another interpretation of Hessian singular vectors is that they are the vectors which maximize the ratio:

(17)

(Anotherway to derive the generalizedeigenvectorequation,15, is to take the gradientof with respectto

, and to note that if  is at a maximum, then its gradient is zero.)

Thenumerator, is a measureof the“size” of thevector . Thedenominator, is a measureof

the likelihood of an analysis error , since for Gaussian errors:

(18)

In otherwords,theHessiansingularvectorsarethevectorswhich for agiveninitial likelihoodgrow to maximum

“size” at time  (where “size” is measured by ).

5. THE ECMWF REDUCED-RANK KALMAN FILTER

5.1  The subspace

TheECMWF reduced-rankKalmanfilter is anapproximateKalmanfilter which usesHessiansingularvectorsto

define a subspace. The filter is based on the observation that if we define

(19)

then,by equation15, we have . That is, thevector givestheactionof the inverse

analysis error covariance matrix on the Hessian singular vector at initial time.

More generally, for any time , we may define vectors at time : and

. It is easy to show that these vectors satisfy
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(20)

where  is the forecast error covariance matrix at time.

In particular, by chosing to bethetimeatwhich thebackgroundfor thenext analysiscycle is valid, wegetaset

of vectors whichwemayuseto defineasubspace,andasetof vectors whichdefinetheactionof the

inverse of the next cycle’s background error covariance matrix on the subspace.

Once the Hessian singular vectors are known, the vectors  and  are easily calculated.

5.2  Theinner product

Having chosenasetof vectorswith which to defineasubspace,wemustnow considerwhich innerproductto use

to defineprojectionontothesubspace.Thiswill allow usto partitionany vector into apart which lies

in the subspace spanned by the Hessian singular vectors, and a part  which is orthogonal to the subspace.

Consider how the the initial orthogonal component evolves in time. At time , we have:

(21)

We would like to be orthogonalto the vectors with respectto somesuitableinner product.The

obviousinnerproductis definedby thematrix . Thevectors areorthogonalin thesensethat for

we have:

(22)

Unfortunately, this does not lead to a convenient inner product for use at the analysis time.

However, theHessiansingularvectorssatisfyasecondorthogonalitycondition.For any time and ,

it can be shown that:

(23)

This allows us to define an inner product:

(24)

Suppose we require for . Now, and

. So, at time T, we will have:

(25)

Thus,the evolved vector is orthogonalto the evolved Hessiansingularvectorswith respectto the inner

product defined by the inverse of the evolved covariance matrix.

In fact,wedonotknow thecovariancematrix , sowecannotuseit to defineaninnerproduct.However, we

do have anapproximationto it, in theform of thethestaticbackgrounderrorcovariancematrix . TheECMWF

reduced rank Kalman filter therefore uses the inner product:
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Figure 1. Streamfunctiononmodellevel 39 (approx.500hPa) for the3 leadingHessiansingularvectorsfor 03z

15 October 1999. (a) Vectors at initial time. (b) Vectors at final time, 48 hours later.
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(26)

5.3  The background cost function

The ECMWF reducedrank Kalmanfilter uses4dVar to performthe analysis,but modifiesthe backgroundcost

functionto useaflow dependentcovariancematrix for thesubspacedefinedby theHessiansingularvectors.If we

partition the backgrounddeparture into its projectiononto the supspaceandits orthogonalcomponent,the

modified background cost function may be written as:

(27)

Now, we have chosento usetheinnerproductdefinedby Eq. (26). Hence,thesecondtermon theright handside

vanishes. The background cost function is therefore positive definite. To evaluate the first term, note that:

(28)

where are the projection coefficients. (In fact, the ECMWF reducedrank Kalman filter implementsthe

modifiedbackgroundcostfunction in a somewhat different,but algebraicallyequivalentway. The detailsof the

implementation will not be described here. They are described byFisher 1998.)

6. EXAMPLES

Fig. 1 shows thestreamfunctionatmodellevel 39 (approximately500hPa) for theleadingthreeHessiansingular

vectorsfor initial time03z15October1999.A 4dVarHessianwasused,andtheoptimizationtime was48

hours. The matrix  was equivalent to a dry energy inner product.

In thelectureon4dVar, it wasshown thattheincrementgeneratedby anobservationat thestartof theassimilation

window is completelydeterminedby thestaticbackgrounderrorcovariancematrix.For thereduced-rankKalman

filter, theincrementfor suchanobservationis determinedby themodifiedbackgroundcostfunction,andtherefore

includesaflow-dependentcomponent.Fig.2 illustratesthatthisis indeedthecase.Fig.2 (a)showsacross-section

of the temperatureincrementgeneratedin 4dVar by a pair of geopotentialheightobservationsat 500hPa at the

beginningof theassimilationwindow. Theslightasymmetryof theincrementon theleft of thefigureis dueto the

effect of orography (verticalcorrelationsaredefinedwith respectto modellevels,whereastheverticalcoordinate

in Fig. 2 (a) is pressure).Theincrementsgeneratedby thesameobservationsin thereduced-rankKalmanfilter are

shown in Fig. 2 (b). The incrementto the left of thefigure is clearlymodified.Theobservation in this casewas

closetoafront,asisshownbyacross-sectionof potentialtemperature(Fig.3 ). Thenegativecontoursextendalong

the frontal zone, and the positive contours are tilted westward with height.
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Figure  2. Temperature increments along latitude 40 N generated by two 500 hPa height observations at the

beginning of the assimilation window (a) in 4dvar, (b) in the reduced-rank Kalman filter.

Figure 3. Cross-sectionof potentialtemperaturealonglatitude40N correspondingto Fig. 2 . Valueslargerthan

400 K have not been contoured.
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