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1. BASIC IDEAS

1.1 The radiative transfer equation for emission to space

The monochromaticadiationintensityat frequeny v emittedalonga vertical pathat the top of the atmosphere
and incident at a satellitgarne instrument is gén by:

_ 0 dTv(Z)
R, = (Iy),T1,(20) +LOBV{ T(2)}——d=, 1)

where
(1), is the emission from the earth's swd at height,
T,(2) is the \ertical transmittance from heightto space,
T(z) is the \ertical temperature profile,
andB,{T(z)} is the corresponding Planck function profile.
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(20 Inversion methods for satellite sounding data

Herewe have neglectedmolecularscatteringn andout of the beam- a goodapproximationin the infraredand
microwave regions. We have alsoassumedior themomentthatno cloudis presenandwe shallreturnto thecloud
problemlater. If theearth'ssurfacereflectsradiationsignificantly thenwe acquireathird termin (1) representing
radiationemitteddownwardsby the atmospherand reflectedbackin the directionof the satellite.For simplicity
we have ignoredthis term,which is equivalentto assuminghatthe surfaceis black (oftena goodapproximation
in the infrared). Reflection of solar radiation by theatefmay usually be gkected also.

Equation(1) mayalsobe usedto representadiationemittedalonga slant(nonvertical) pathif thetransmittance
is computedappropriately Making the approximatiorof a planeparallelatmospherefor a viewing paththrough
the atmosphere at angdeto the \ertical, then

1,(2,0) = exp%—secﬁfokv(z') c(z') p(z') dzF, (2a)
0 e 0

wherep(z), c(2), k,(z) arerespectiely thevertical profilesof atmospheridensity absorbinggasmixing ratio
and absorption cofifient.

It is oftenmorecorvenientto choosepressurastheverticalcoordinate. Then,usingthehydrostaticapproximation
(dp = —gp dz), we obtain

U U
T,(p.8) = exp-sed[ ky(p') c(p') dp'/g 0. (2b)
O 0 O

1.3 Integration over frequency

Realsatelliteinstrumentsenseaadiationover arangeof frequeng ratherthanmonochromaticadiation,andit is
usuallynecessaryo performanintegrationover frequeng to obtainradiance®f adequataccurag as“seen”by
the satellite instrument, i.e.

R,f,d
- L @
ffudv

wheref, istherelative responsef theinstrumento radiationatfrequeng v . Thiscomplicateshe calculations
involved in the interpretationof the data, but doesnot changethe basic nature of the inversion problem.
Therefore, for this discussion, we shall ignore it adkvwonly with the monochromatic equations.

1.4 Weighting functions

Equation(1) may be written as

R, = (Iy),1,(20) +J’:OBV{T(Z)}KV(Z) dz. ®3)

K ,(z) = dt,(z)/dz is calleda WEIGHTING FUNCTION; it weightsthe Planckfunctionin the atmospheric
componenbf the emittedradiation. It specifiesthe layer from which the radiationemittedto spaceoriginates,
andhenceit determineghe region of the atmospheravhich canbe sensedrom spaceat this frequeng. Fig. 1
shavs the transmittanceprofiles and correspondingweighting functions at two frequenciesfor which the
atmospheri@bsorptionis different. Sincethe weightingfunctionis the derivative of the transmittanceprofile, it
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will peakhigherin the atmospheréor thefrequeng at which the absorptionis stronger In this way, a carefully
selecteddmily of frequencies can be chosen to sense radiation fréenehif layers in the atmosphere.
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Figure 1. Idealised transmittance profiles and weighting function®dtéguencies with diérent absorption
coeficients. \értical coordinate: scale height = — Jgmessure).

To understandjualitatively why theweightingfunctionstake thisform, we canconsideitheemissiorto spacdrom
air parcelsof unit volumeat differentheightsin the atmosphere Theradiationemittedto spacds determinedy
three fctors:

(@) the temperature of the air parcel, i.e. theable we hope to measure,

(b)  thenumberof moleculesof emittinggas,which is determinedy theatmospheridensity(andalso
by the mixing ratio of the absorbing constituent,although for the principal gasesused in
temperatursounding—carbordioxide andoxygen—thamixing ratio canbeassumedonstanand
known),

(c) the transmittance of the atmosphere from the air parcel to space.

Thisis illustratedin Fig. 2 for threeair parcelsatdifferentheights. For thelowestparcel theatmospheridensity
is high andsothe amountof radiationemittedis high, but almostall is absorbedy the atmospherabove it and
verylittle reachespace.For thehighestparcel thetransmittancéo spaces high,but comparatrely little radiation
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is emittedbecausatmospheridensitydecreasesxponentiallywith height. Thesawo conflictingeffectscombine
in sucha way that, at someintermediateheight,the contrikution of a parcelto the radiationreachingspaceis a
maximum. Thevariationof theradianceo spaceasa functionof heightis shovn by the curve ontheright of Fig.
2. Mostof theradiationto spaceoriginatesn alayeraroundthepeakof thisfunction(whichis actuallytheproduct
of theweightingfunction andthe Planckfunctionprofile, i.e. theintegrandin equation(3)). Fromknowledgeof
the atmosphere'sompositionand spectroscopiparametersve cancalculatewherein the atmospherehis layer
will be. Thentheintensityof theradiationcanbeinterpretedn termsof the meantemperatur®f thelayer Using
radiationat differentfrequenciedor which theabsorptiorstrengthis different,we canbuild afamily of weighting
functions,which provide informationon the meantemperaturesf mary suchlayers,thusleadingto theideathat
we mightbeableto RETRIEVEinformationontheatmospheri¢cemperaturg@rofile from a setof multi-frequeny
measurements.

A
Height

Contribution to emission to space

Figure 2. Left—illustratingthe attenuatiorof upwellingradiationemittedfrom threeheightsin theatmosphere.
Right—the correspondingevtical profile of the contrifition to the emission to space.

1.5 Characteristics of weighting functions

At this point, two aspect®f theproblemareworthy of note. Firstly, theweightingfunctionsarebroad(i.e. several

1. We note in passing that groubdsed measurements ofadavelling atmospheric radiation do notveaassociated with them weighting

functions of the same form. Here, the atmospheric density and transmittance from air parcel to instrument both decrease with height, and so
(for an absorber mixing ratio which is constant with height) tteekrcontribtion to the measured radiance iways from close to the

instrument, whateer the frequenc
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kilometres). This meanghatthe satelliteinstrumenttansensehe meanpropertiesof broadlayersvery well, but
it is only ableto sensehe characteristicef singlelevels or narrov layersinsofar asthey arecorrelatedwith the
propertiesof the broadlayers. The width of the weighting functionsseverely limits the capability of satellite
soundergo detectatmosphericstructurewhich hasrelatively small scalein the vertical. The finite width of the
weightingfunctionsis afundamentafeatureof passve remotesensingechniques.However, the precisewidth is
determined by technological considerations,xgdaéned belo.

Secondlyfor mostinstrumentsthefamily of weightingfunctionsarehighly overlapping.Oneconsequencef this
is that,althoughtheinstrumenimaymake measurementst N separatérequencieswe obtainfewerthan N pieces
of independent information. The implications of this in thesigion problem are discussed helo
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Figure 3. VS normalised weighting functions (froBmithet al. 1979).

Figure3illustratestheweightingfunctionsfor thepresenbperationatoundingsystem—th&@ IROS-NOperation-
al Vertical Sounder(TOVS) which consistsof 3 instruments: the High-resolutioninfrared RadiationSounder
(HIRS/2),theMicrowave SoundingUnit (MSU) andthe StratospheriSoundingUnit (SSU). For furtherinforma-
tion on TOVS, seeSmithet al. (1979) orSchwalb(1978).

For the microwave channelsthe spectralresponsest the individual measurementrequenciequsually called
“channels”)aremuchnarraver thanthewidthsof theatmospheri@bsorptiorines. Thereforeheweightingfunc-
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tionsarecloseto theirmonochromatidimit. However, it is possibleto improve the vertical resolutionof the mi-
crovave sounderby adding more channels. This will be donefor the AdvancedMicrowave SoundingUnit
(AMSU) which,alongwith HIRS, will constitutehe AdvancedTOVS onthenext generatiorof polarorbiting sat-
ellites (from about 1994). The weighting functions for AMSU are illustraté&diging .
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Figure 4. AMSU normalised weighting functions.

For theinfraredchannelghe positionis very different: HIRS is afilter radiometerandits channelhave spectral
widthstypically hundredf timesgreatetthantheatmospheri@bsorptiorines. Thereforethey averagetogether
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frequenciegor which the absorptiorstrengthsarevery different. This hasthe effect of broadeningheweighting
functionsconsiderably By usinginstrument®f muchhigherspectratesolution suchasinterferometersr grating
spectrometerst is possibleto achieve spectrakesolutionsloserto thewidthsof theatmospheri@bsorptioriines.

In this way instrumentswith severalthousandchannelsandmuchsharpemeightingfunctionscanbebuilt. Fig. 5

illustratestheweightingfunctionsfrom suchaninstrument. Similar instrumentsareplannedor satellitemissions
in the late 1990s.
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Figure 5. A selectiorof weightingfunctionsfor severalbandsof theinterferometeproposedor the Atmospheric
InfraRed Sounder (AIRS) instrument.

1.6 The forward and inverse problems

Theinstrumentmakesmeasurementsf radiancein a numberof channelsv; . For eachchannelwe canwrite a
radiative transfer equation:

R; = (TIo)1i(z0) + [} BAT(2)}K () dz . (4)

This equatiorexpresseshe FORNVARD PROBLEM for thechannelj.e. giventhe stateof theatmospherethe so-
lution of this equationtells ustheradiancencidentat the satellitein this channel. However, whenpresentedvith
satellitemeasurementsye arefacedwith the INVERSE PROBLEM: giventhe measurementsyhatis the state
of theatmospheréin termsof its vertical profilesof temperatur@ndconstituents) .Let usconcentrat®nthetem-
perature profile wersion problem and return to the constituent problem later
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Sincewe have a limited numberof channels(i = 1 - I), we canseeimmediatelythattheinversionof equation
(4) is ILL- POSEDor UNDER-CONSTRAINED. This is becauseave aretrying to retrieve T'(z) , a continuous
functionof height(which,in generalrequiresaninfinite numberof parameterso represenit fully), from afinite

numberof measurementsThis meanghatthereexistsaninfinite numberof profiles7T'(z) whichsatisfythemeas-
urementsOur problemis to find onewhichis reasonabland,if possibleto find the profile whichis bestor most
reasonable in some sense.

In addition,the measurementiwayscontainsomeerroror “noise”. Thisfurtherincreasesheill- posedhatureof
the problem, and we must find a method of solution which does not amplify the noise to an unaccep&sble de

1.7 A vector—matrix representation

At this point, it is corvenientto changefrom the notationof continuousprofilesandintegrals,asin equation(4),
to discreteprofilesandthe notationof vectorsandmatrices.We consideitheatmospheréo be composeaf mary
thin layers (numbered,from the top, j = 1 - (J —1)) with meantemperatureT'; and Planck function
B;; = B{T,} . Letthetransmittancdrom the bottomof layer; to spacebedenotedt,; . Thenequation(4) be-
comes

J-1

R; = (Ip);1(z9) + ) By(1;_1-T;
j=1

or (5)

J-1
R; = (Iy);1,(z0) + z B,K,;.

J=1

To solve this equationfor B, it is corvenientto find atransformatiorof B whichis independentf i (i.e. of fre-
queng). For channelswvhicharevery closetogetheiin frequeng, we canusethe Planckfunctionata centralfre-
queng. However, this is rarely an adequatelyaccurateapproximation. Onesolutionis to specify a reference
frequeng for the Planckfunctionand“adjust” all the measuredadiancego it. Alternatively, we cancorvertra-
diancesto someotherquantity suchasequialentblack body temperaturewhich is independentf frequeng.
Theseare technicaldetailson which we neednot dwell; it is only necessaryo appreciatehatit is relatively
straightforvard to find a channéhdependent form oB so that we may write

J-1
R; = (1y);1,(z0) + z BK,;. (6)
=1

Jj=

We canalso“absorb”the surfacetermasthe o/ th termin thesummatiorby settingB; = I, andK;; = T1,(2,) -
Then

J
R =y BK;. (1)

Jj=1

If we now representhe radiancein all channelsy a vector R andthe Planckfunction profile by a vector B,
equation(6) may be written for all channels simultaneously as

R =KI[B. (7)
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K is a matrix containingdiscreteweighting function elementskK;; . Thus, our measurementare a vector R

(elementsR;, i = 1 - I), ourunknavnsareavectorB (elementsB;, j = 1 - J), andK is amatrix of size
I xJ . Ourproblemis to invert equation(7) to find B. Thenthe temperaturerofile is obtaineddirectly asa
known function ofB .

1.8 Linearity

It is usuallyimportantto appreciatehedegreeof LINEARITY of ary giveninverseproblem. By thiswe meanthe
degreeto whichwe canseparateuttheknownsandunknovnsof theprobleminto alinearequation.For example,
in the caseof equation(7), it representsi linearproblemif K isindependentf B. If K isafunctionof B, we
have anonlineamproblem. In thetemperatureetrieval problem,K consistof differencedetweertransmittances
to spacefrom thetop andbottomof thelayer (seeequation(5)). Thetransmittancesiyhenexpressedn pressure
co-ordinategseeequation(2b)), arestrongfunctionsof the mixing ratio andpressuref theabsorbinggasandits
spectroscopiparameterdyut thelatterareonly weaklytemperaturelependent.Thereforethe problemis almost
linear This meanghatwe cancalculatea reasonabl@approximationto K without accurateprior knowledgeof
theunknavn B . It alsomeanghattheweightingfunctionsfor a givenchannelarealmostindependentf the at-
mospheric conditions.

Thenearlinearnatureof thetemperaturénversionproblemhasallowedthe developmeniof appropriaténversion
methodshasedon lineartheory Neverthelessthe nonlinearitiesaresignificantandmustbe consideredtarefully
when accurate results are required.

An excellentdiscussiorof linearinversiontheoryapplicableto a wide rangeof geoplysical problemss givenby
Menke (1984).

2. TEMPERATURE PROFILE INVERSION METHODS

2.1 Some simple solutions and their problems

We notedabove thatthe problemof retrieving a continuousprofile from a finite setof measurement8nverting

equation(4)) is ill- posed.With thediscreteformulationof equation(7), if J > I, thentheproblemis still ill- posed
becaus¢he numberof unknavnsexceedshe numberof simultaneougquationgepresentedy this singlematrix

equation. We canmalke the problemWELL-POSEDby reducingthe numberof layersover which the profile is

specified or byxgpanding the profile in terms of the cfigients of a restricted set oSS FUNCTIONS:

B =D, 8
where® is a matrix of basis functions (sizex K') andb is vector of codicients (lengthK'). Then
R=KObb = Alb, (9)
whereA has dimensiong x K. If K = I, thenA is square and equati¢®) may be inerted directly:
b=A"R, (10)
where! denotesmatrix inverse. Substitutioninto equation(8) then givesthe solutionfor B. However, this

solutionis foundto be unsatishctory(seeRodgers 1976),becausehe problemis usuallylLL- CONDITIONED.
By this, we meanthat the elementsof A~ tendto have large magnitudeqpositive and negative) leadingto an
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amplificationof smallerrorsin R into large errorsin B . This arisesbecausehe weightingfunctionsarebroad
and overlapping—wedo not have I independenpiecesof information. We have found one of the family of
profileswhich are mathematicallyconsistenwith the measurementdut usuallyonewhich is far from the true
profile.

It is possibleto impraove on this by restricting the numberof basisfunctionsto K <I. Now we have an
OVER-CONSTRAINED problem—thenumberof equationsxceedshe numberof unknovnsandwe may seek
a solution which is a leasguares fit to the measurements, i.e. we minimize

é ER g A.b g (11)
[ ij
i=10 k=1 0
with respect to all the elements &f. The solution is then
b= M MR, (12)

where' denotes matrix transpose.

Thisleastsquaresolutiontendsto bebetterthantheexactsolutionrepresentetly equation(10) but is still usually
unsatishctory For a successfumethod thebasisfunctionsmustbe carefullychoserandwell suitedto thetypes
of profileswhich arefoundin the atmosphere For example,simple functionsof heightsuchaspolynomialsare
notsuitable. Also, it is oftenfoundthatthe solutionover-its themeasurementseeRodgers1976,for moredis-
cussion).

2.2 The estimation problem and the role of constraints

Fromour appreciatiorof theill- posednatureof the problemandexperiencewith simplesolutions,we areforced
to the conclusionthatwe needinformationadditionalto the measurementis orderto CONSTRAIN the profile
andto choosea reasonablgrofile from the infinite numberof mathematicallypossibleprofiles. Fortunately for
problems of interest in atmospheric remote sensing, additional informatieailabée.

In seekingamethodof solution,we accepfrom thestartthatwe cannoffind the“true” profile exactly - theill- posed
natureof the problemandthe noisein the measurementgrecludethis. We mustlook insteadfor an ESTIMATE
of the true profile which is acceptably accurate or the best estimate in some statistical sense.

We maylook towardsprobability theoryor statisticaltechniquedgo tell ushow to combineour radiationmeasure-
mentswith otherinformationin orderto selectfrom all thepossibleprofilesthebestone. In thiscasejt is theother
(“prior” or “background”)informationwhich providesthe constrainton the solution. Therearemary of these
methods in the literature. Thare all interrelated, and some axamined bel.

Alternatively, we maytake anempiricalapproactandlook for anad hoc methodwhichfindsasolutionto theprob-
lem—oneof mary, but onewhichis foundthroughexperienceo beacceptable Thereareanumberof suchmeth-
odsin the literatureand we shall look at onein section2.3 (e). Thesemethodsdo not addresghe estimation
problemdirectly. They useavarietyof constraintsvhicharenotalwaysobvious. Thesecantake theform of limits

onthesmoothnessf the profile or therequirementhatit is composeaf alinearcombinationof somebasisfunc-

tions.

It isinterestingo notethatall thecharacteristicef the satellitesoundingnversionproblemarealsocharacteristics
of thedataanalysisproblemfor numericalweathermprediction(NWP). Thetwo aremathematicallyequivalent;in
general thg are both estimation problems which are ill-posed without the use of prior constraints.
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2.3 Practical solutions

2.3 (a) The maximum probability solution. It is oftenusefulto think of our knowledgeof avariablein terms
of a probability densityfunction (PDF): let P(x) expressthe probabilitythata scalarvariablehasavaluex . If
weknow theestimate®sf x have mearnvaluex, anderrorswhich, statistically arenormallydistributed(Gaussian)
with standard devation o, then we can say that x has a probability described by a PDF

2
P(x) a exp[—l(x *o) } (13)
2 2
o)
When considering aector \ariablex , the equialent equation is:
1 T -1
POX) o expl 5(x o) (B lx=xo) |, (14)

whereB is the error ceariance about the meaaluex,,

A very powerful tool in probabilitytheoryis BAYES THEOREM, which helpsusto manipulatethe probabilities
of two stater eventsoccurringtogether Let usconsideitwo states,x andy . Theprobabilitythatx andy will
occurtogether is calledtheir JOINT PROBABILITY andis denotedP(x, y). The probability thatx will occur
wheny occursis calledthe CONDITIONAL PROBABILITY of x giveny , andit isdenotedP(x|y) . It is evident
that the tvo are related by

P(x,y) = P(x]|y)P(y), (15)

i.e. thatthe probabilityof x andy occurringtogetheris the probabilitythatx occurswheny occursmultiplied
by the probability thay occurs.

We can also interchange andy :

P(x, ) = P(y|x)P(x). (16)

Combining(15) and(16):

P(x|y) = P(y|x)P(x) /P(y) . 17)

This is Bayes theorem.

How is thistheoryrelevantto ourproblem?Let x represensomeaspecbf theatmospheristatesuchasthevertical
temperaturgrofile (or perhapsomefunction of it suchasthe Planckfunction profile, or a vectorcontainingin-
formationon thetemperaturerofile andotheratmospherivariables—inthis way thetheorywe developis more
generallyapplicablethanthatintroducedin Section1). Let y™ be a vectorof measurementsuchassatellite
soundingdataexpressedsradiancesbrightnessemperaturestc. Ourpurposes to find themostprobablevalue
of x given the measuremenys', i.e. to maximize the conditional probability ofgiveny™ :

P(x|y™) = maximum. (18)

We apply Bayes theorem in the form,
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P(x|y™) o P(y"|x)P(x). (19)

Herewe have takenP™), theprior probabilityof makingameasurement™ to be constan{overtherangeof val-
ues alleved by the instrument).

P(ym|x) is theprobabilitythatwe shallmake ameasurement™ whentheatmospheristateis x . Letusrepresent
theforward problemby thegenerakxpressiony{ x} . 2 If themeasurementsereerrorfree, then P(ym|x) would
beadeltafunctionpeakingaty™ = y{x} . However, themeasurementsill containerrorswhichwe shallassume
are Gaussian with garianceY . Then the PDF becomes (cf. equatjb4))

PO @ x5 -y ) Oy -y{x . (20)

P(x) containsourinformationon x priorto makingary measurement T hisinformationmaycomefromanumber
of sources.For example,we may usea forecastprofile from a numericalweathermredictionmodel(alongwith

someestimateof its probableerror characteristicsdr we may have climatologicalinformationsuchasthe clima-
tologicalmeanprofile andits cavarianceaboutthe mean. We shall call suchdataBACKGROUND INFORMA-

TION and denoteit by a backgroundprofile x° andits error covarianceB . Then, for normally distributed
background errors, the prior probability of the profilgihg a \aluex is given by (cf. equatiofil4)):

P(x) a exp[—%(x - xb)T B Ox - xb)} . (21)

It is morecorvenientto maximizethelogarithmof (19) ratherthan(19) itself; substitutingfrom (20) and(21) and
taking the natural log ges

In{P(xy™} = —(x—x)" B Tx—x) -2y -y{x}) Oy ' Oy"-y{x}) + constan.  (22)

2.3 (b) Theinversion problemasa variational problem. It is useful to identify the scalar quantity
—In{ P(x|ym)} + constan, with a COST FUNCTION which has to be minimized:

T() = Sx=x)" B x=x") 50" -y{x) Oy -y{x3). (22)

Now we seethatthe mathematicaproblemis equivalentto thatwhich arisesin variationalNWP dataassimilation
(e.g.seeLorenc1988). Thequadratimatureof the costfunctionariseshecauseve have assume@d Gaussiariorm
for the measurement and background errors.

In the extensve literatureon satellitesoundinginversionsit is unusuato find the problemaddresseth this way,
i.e. asavariationalproblem. However, it is helpful to do so, asit makesclearthelink with literatureon similar
variationalproblemsjncludingthatof NWP dataassimilation. Moreover, oncethe generalnonlinear)inversion
problemis posedn this way, mostof the solutionswhich appeatin literature,someof which areoutlinedbelaw,
can be seen asnous levels of approximation to the optimal solution.

Theoptimalsolution,i.e.themostprobableprofile,is foundby minimizing equation(2a)or by solvingits gradient

2. Note that equatior{g)<7) are particular (simplified) ays of &pressing the forard problem; here we retain a completely general form.
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equation: ifJ'(x) represents the gradientd{x) with respect toc, then

J(x) = BT Ox—x")—K(x) 0¥ y"-y{x}) = 0, (23)

whereK (x) is a matrix containing the desitives, dy{x}/dx. 3

In generalthis problemis nottrivial—thereis no generabnalyticsolutionto this equation. However, mary tech-
niquesexist for solvingit numericallyfor problemsof interest. Herewe shall consideronly the linear casej.e.
when

K(x) = K(xb) = K, a constan. (24)

Integratingdy{x}/dx = K gives

y{x} = y{x} +K Ox-x"). (25)

Substituting from(25) and(24) into (23) gives

x = X+ B+ KTy ) T KT v Oy -y X)) (26)

Matrix manipulationyields an equialentequationwhich is often computationallymoreefficient (i.e. it involves
the inversion of smaller matrices):

x = x°+B K OK B K +Y)  Oy"—y{x}). 27)

Ourinversionthereforgakesthefollowing form: we have abackgroundr “first-guess”profile x” fromwhichwe
calculatethecorrespondingadiances/{ xb} usingaradiative transfemodel. We alsocalculatéats derivatives K
(i.e.theweightingfunctions). With estimate®f theerrorcovarianceof measurementsy , andof thebackground
profile, B, we can solg equatior(27) for x using measurements' .

It is useful to note thgR7) has the form:

x=x" = WIOy"-y{x’}). (28)

In thecasedescribechereW = B K ' OK B K+ Y)_1 , butthesamegeneraform of equationwith different
expressiongor W appearsn mostinversionschemeslt expresse$iow differencedetweermeasuredadiances
andcalculatedradiancegqi.e. calculatedfrom the backgroundprofile) “map” into differencesbetween retrieved
profile andbackgroundrofile throughthe INVERSE MATRIX, W . Notethatthe optimalform of W above is
identicalto that obtainedin the optimal interpolationtechniquefor NWP dataassimilation(seeLorenc 1981),
shaving agin the close correspondence between tleproblems.

2.3 (c) Theminimumvariance solution. Anotherstatisticalapproacho theestimationproblemis to seekthe
solutionwhich minimizesthe mean-squardifferencebetweerthe retrieved andtrue profileswhenaveragedover
alarge numberof cases.Let usassumehatthe forward problemis lineatr, i.e. thatthe true radiancesy{ xt} may

3. WeusethenotationK becausefor thelineartemperatureetrieval problem the derivativesof theradiancesvith respecto the profile ele-
ments are the weighting functions, cf. equation
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be calculated from the true profblé by (cf. equatior{25)):

y{x} = y{x} +K Ox'=x"). (29)

The measured radiances are the true radiances plus measuremeit error
y" = y{x}+em, (30)
and so

Yy oy {x? = K OX =x") + €™, (31)

L t
We minimize the mean-square departure dfom x° over a lage number of casey :

N
%EZ(X—xt)T Ox —x') = minimum. (32)

If we seeka solutionof the generalinearform of equation(28), thenby substituting(31) into (28), and(28) into
(32), differentiating with respect to all elementsWf, and then solving fowV , we find

W =BK OKBK +Y)", (33)
where
1 N bt b _t\T
B = ENEZ(X —xOx-xY) ', (2a)
and
Yy = ni y m m T
= WE’Z(E ECH (2b)

i.e.B andY are the background and measurement erncar@nces.

We notethatthe minimumvariancesolutionis equivalentto the maximumprobability solutionin thelinearcase
when the error characteristics of both background profile and measurements are Gaussian.

2.3(d) Linear regression . It is possibleto tackletheinverseproblemwithoutary knowledgeof theradiatve
transfemphysicsif we have alargesetof N measuremerpairsof satelliteradiancesy™ with atmospheriprofiles
x™ (e.g.from radiosondes}loselymatchedn time and space. We canthenlook for the coeficientsof alinear
combinationof the radiancesvhich bestpredicttheatmospherigrofilesin aleastsquaresense.We write apre-
dictive equation

x=x" =W E(ym—ﬁ), (34)
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wherex™ andy™ arethemeanvectorsof our large sample(usuallycalledthe dependensample). Thenwe find
the value of W for which

N

X(X—xm)T(x—xm) = minimum, (35)
N -y = _
Z[x—xm—W Qy"—y™M] [x—x" =W Qy" —y™] = minimum. (36)

Differentiating with respect to all elementswWf, and solving folW , gives
A i R
W=[Z(x —x7) Ry —y)}E{Z(y -y ) Ry —y)} @37

Thisis a purelystatisticalmethod. Alternatively, thetechniquemaybeusedin a “physical-statistical’'mannerby
startingfrom a setof N representatie profiles, calculatingfrom themtheoreticallythe correspondingadiances
andregressingthe two setsof dataasin equation(37) (taking careto allow for the measuremenérrorin the
radiances).

If the radiatve transfer equation is linear may be written as

Y oy {x™} = y"—y™ = K Ox"—x™) + €™ (38)

Substituting(38) into (37) and assuming the measurement ereStsare uncorrelated with the profiles, we obtain

W=cK Ok K +E) ", (39)

This shavsthat,in thelinearlimit, linearregressiormethodsaremathematicallyequivalentto the minimumvari-
ancesolutiondescribedn section2.3(c), wherethe backgroundorofile andits errorcovariancearethe meanand
covariance of the dependent set.

2.3 (e) Physical iterative methods. The statisticalapproachepresentedibove aremainly linear Someare
notwell-suitedto handlingnonlineamproblemsandthosewhich aredo soatthe expenseof considerableomputa-
tion. Physicalmethodgwhich usead hoc mathematicatatherthanstatisticalconstraintsaremoreflexible in this
respect. However, they do not attemptto be “optimal” (in the sensdn which the statisticalmethodsare)and, if
not usedwith care,cancorverge on a solutionwhich, althoughit fits the measurementss not meteorologically
realistic.

We presenherethe physical,iterative methoddueto Smith (1970,1985)adaptedslightly to conformwith theno-
tationusedabove. At the n th stepof theiteration,we have anestimateof theprofile x" from whichwe calculate

radiances/(x") . Theprofileis thenupdatedaccordingo thedifferencebetweerthemeasure@ndcalculateda-
diances:
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1
Z WLj(yT_y{ xn}i)

(R EE . : (40)

X

W;; areempiricalweightswhich couldtake a numberof forms. Smithusesthe weightingfunctionsthemseles
asweightsandfindsthatthis givesa stablecorvemgence. Theiterationis startedrom afirst-guesgrofile, suchas
a forecast profile.

It is alsopossibleto constructybrid methodsn which a statisticalregressiorinversionis usedasafirst-guesdgor
a physicaliteratve method,or in which a physical methodprovidesthe linearizationpoint for a linear statistical
retrieval. With care,amethodwhichis physicalanditerative canalsobe madestatisticallyoptimal- seeRodgers
(1976) orEyre (1989).

3. CONSTITUENT PROFILE INVERSION

Satellitemeasurementst frequenciesn absorptiorbandsof atmosphericonstituentsvith variableconcentration
(suchaswatervapourandozone)canbe usedto estimatethe profilesof theseconstituents.The principlesof the
methodsaregenerallythe sameasthosepresenteébore, but certainaspect®f the problemmake constituenpro-
file inversion more dffcult than that of temperature.

Firstly, the problemis morenonlinearfor constituents.This is becausdhey enterthe radiatve transferequation
throughthe mixing ratio profilein theexponentof equation(2a). It is notpossibleto separat¢heradiative transfer
equationinto the productof a simple constituenfunctionandonewhich is constituent-independeniThe conse-
guencds thatmethodswvhich make assumptionsf linearity arelessaccurateWe canstill definea “temperature
weighting function” for a constituent-soundinghannelas the derivative of the transmittanceprofile, but this

weighting function will \ary considerably; its peak will me up in height as the mixing ratio increases.

The secondmain problemis that,in certaincircumstanceghe radiancesareinsensitve to changesn the mixing
ratio. To illustratethis, considerthelimit of anisothermaltmospherattemperaturél’. Then,ary mixing ratio
profilewill resultin thesameradianceso spacegi.e. B, { T’} ). In practicewe find this problemin theretrieval of
low-level watervapour;becauséhe temperaturef the watervapouris closeto thatof the surface,infraredradi-
ancesrerelatively insensite to changesn low-level watervapour Thisis notthe casefor microvave measure-
mentsover the sea,wherethe low emissvity of the seasurfaceprovidesan apparentlycold backgroundagainst
which changes in {@-level water \apour can be detected.

Simplelinear regressionmethodshave beenusedoperationallyfor watervapourprofile inversion,but nonlinear
methodsarepotentiallysuperior For moredetails,seeSmith(1985). In recentyearsjncreasingisehasbeenmade
of SIMULTANEOUS methodsjn whichtheatmospherigrofile vectorx containsbothtemperaturandwaterva-
pour profiles(and possiblyalsoothervariableswhich affect the radiatve transfersuchassurfaceemissvity and
cloud parameters). S&mithet al. (1985) orEyre (1989).

4. CLOUDS

Cloudscreatea major problemfor temperatureetrieval. Not only do they have considerableffectson infrared
radianceshut they make the inversionproblemhighly nonlinear;they causethe weightingfunctionsto change
abruptlyatthecloudtopandthusmake themstrongfunctionsof cloud-toppressur@andamount.Moreover, opaque
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clouds preclude the sensing of information from Wetloe cloud.

Thefirst approacho the problemis technologicali.e. to soundtheatmospheratfrequenciedor which cloudsare
(almost)transparentsuchasin the microvave region. Thereis atendeng for increasingelianceon microvave
radiometersastechnologyin this region advances. However, theinfraredhasa numberof advantages narraver
weightingfunctionsin the tropospherelessvariablesurfaceemissvity/reflectivity andhigherspatialresolution.
For thesereasonsa combinationof complementarynfraredandmicrowave instrumentss likely to be preferred
for the foreseeable future.

Thesecondapproachs to screerthedatacarefullyfor cloud“contamination’andto useonly datafrom cloud-free
areas.Many algorithmshave beendevisedto dothis (e.g.seeMcMillin andDean,1982). Unfortunately mostof
theinterestingweatheroccursin cloudy areasandso this is only a partial solution. For partly cloudy areasso-
called“cloud-clearing”algorithmshave beendevised. Theseestimatefrom the “cloudy” radiancegheradiances
whichwouldhave beenobseredif therehadbeenno cloud. Mary of thesemethodsarebasedntheadjacenfield
of view or “N" methodoriginatedby Smith (1968). We make the assumptiorthattwo adjacenfields-of-viev of
aninstrumenilabelledl and2) containthe sametemperatur@andhumidity profile andasinglelayerof cloudwith
thesamecloud-topheight,but with differentfractionalcloudcoverages N, andN,, respectrely. Thenwe may
write the follaving equations for the radiances emitted to space in each fieldrof vie

R, = (1-N,)R°+N,R°,

. . (41)

where R® and R° are the radiancesfor cloud-freeand completelyovercastconditions,respectiely. These
equations may be sa@d simultaneously to g

R.-N'R
Rf=21- 2 (42)
1-N

whereN™ = N,/ N,. Alternatvely, we may write

N = . (43)

If anestimateof the clearradiancecanbe obtainedfor onechannelthen N can befoundthrough(43). Then,
since N isindependenof channelthe clearradiancds obtainedfor all otherchannelsising(42). Themethod
fails if N, = N,, which includes the (common) case of complets&lgroast conditions in both fields-of-wie

Thethird approacho theproblemis to performaninversiondirectly from the cloudyradiancesby estimatinghe
parameterslescribingthe cloud conditionseithersimultaneouslyor iteratively alongwith thetemperaturgrofile
(andotheratmospherigparameters).Physical methodswhich take this approacthave beendevised(e.g.Huang
andSmith,1986;Susskinctt al., 1984)andanonlinearvariationaimethodhasbeendemonstratetly Eyre(1989).

5. SATELLITE SOUNDING DATA IN NUMERICAL WEATHER PREDICTION

In recentyearsit hasbecomencreasinglydifficult to shav thattemperature/humiditprofilesretrieved from sat-
ellite soundingdatahave a positive impactwithin operationaNWP dataassimilatiorsystemsparticularlyin areas
whereotherobsenationtypesareavailable. This problemhasarisenpartly becaus&WP systemsave improved
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to a point at which greatcareis requiredin the treatmentof any obsenation type; appropriatequality controlis
necessargndtheerrorcharacteristicef eachdatatype mustbetakeninto account. However, thereareadditional
problems with satellite sounding data.

As discussedh sectionl.5, theintrinsic verticalresolutionof the satellitesoundingsystemis low, bothin relation
to othertemperatursoundingobsenations(i.e. radiosondesandto theverticalresolutionof modernNWP mod-
els. Becausef this the backgroundand constraininformationusedin theinversionaffectsthe retrieved profile

considerably In practicelow-orderverticalstructuresn theretrieval areobtainedmainly from theradiancenfor-

mation,but high-orderstructurecomelargely from thebackgroundnformation. Consequentlyconsiderableare
mustbe taken to avoid component®f the retrieved profile which arenot derived from the radiancedata,but are
artefactsof theinversionmethod contaminatinganotherwisegoodNWP analysis.Anothersymptomof thesame
problemis that retrieved profiles have systematicerror structuresof a very subtleand specificnature(seeEyre
1987). It is difficult for mary analysissystemdo suppresshe harmfuleffectsof theseerrorcharacteristicsvithout
simultaneously losing the real information contained in the radiance data.

Recendevelopmentsn NWP dataassimilationseekto solve theseproblemsby makingmoredirectusewithin the

NWP systenof radianceobsenationsthemseles,ratherthanretrievedtemperatur@rofiles. TheFrenchDirection

dela Météorologig(Durand1986)andthe UK MeteorologicalOffice (EyreandLorenc1989)bothrunoperational
TOVS processingandassimilationsystemdasedon theseideas. At ECMWE, systemdor both one-andthree-
dimensionalariationalanalysisof TOVS radiancesarebeingdeveloped basednthetheorypresentedn section
2.3 (b)(seeEyre 1990,Pailleux1990).
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