Biases in AIRS data

and a correction strategy

Phil Watts* Tony McNally¹ Jonathan Smith¹ Marco Matricardi¹ et. al. ¹

current affiliation: *Eumetsat ¹ECMWF

Overview

- Bias monitoring
- Temporal / geographical stability
- Airmass Index a useful tool
- Attribution
- Correction: $[\delta,\gamma]$
 - demonstration with AMSU-A / AIRS
 - Estimation procedure
 - Assimilation results
 - Limitations
- Summary and conclusions

Monitoring

- Unless otherwise stated:
- All results are for Observation minus First guess
- First guess = RaditativeTransferModel(forecast background)
- RTM:
 - RTTOV-6m
 - Spectral Response Functions from 18-Aug 2001
 - Fixed CO₂
- Global (except where indicated as Tropical (30°S-30°N)
- Cloud-free
- Unselected (No masking to sonde locations)
- 324 Near Real Time channel set

AIRS bias monitoring

Bias Overview 650-1600 cm⁻¹

Bias Overview 2180-2670 cm⁻¹

AIRS biases and sources in SW part of spectrum

Colour coding >> .20mb....Troposphere....1000mb.

Non-LTE 2240-2390 cm⁻¹

Thanks: Niels Bormann, Anu Dudhia

Stability

• Except for known NWP model temporal biases (e.g. stratopause errors) biases are temporarily stable

- Masking to sonde locations has no noticeable effect on global bias
 - NWP error small or 'constant'

CAMEX

June-1 July 200 Advanced Sounders Workshop

CAMEX

AIRS minus Genlin2(NWP)

HIS minus Genlin2(*in situ*)

Geographical stability

- Airmass dependency
 - Ch. 1403 (λ = 7.67/1303.8)
 - N2O
 - Significant airmass dep.

- Ch. 1519 (λ = 7.31/1367.3)
- H2O
- No significant or hidden airmass dep.

Airmass (dependency) Index (AI)

- Transmission error > lapse rate > BT error
 - Tropical lapse rates generally > high latitude lapse rates
- AI = b(30°-90°) minus b(30°-30°)

Ozone band

Shortwave

June-1 July

⊗ 20

Advanced Sounders Workshop

Shortwave: significant N₂ absorption

Shortwave; CO₂, N₂O

Correction strategy

- Possibilities:
 - Airmass regression
 - Powerful, established technique (AMSU/HIRS/SSM-I...)
 - Uncorrected element? > Add predictor
 - Undiscriminating correction
 - [δ,γ]
 - Tried before (HIRS)
 - Limited power (although can be combined with regression)
 - Physically based discriminating correction

copist

To a real spectroscopist

δ, γ - Estimation

30

- 1. Monthly mean ob-fg @ 5°
- + Monthly mean NWP(T,Q,O)

2. Effect of γ =1.05 using NWP

$$J = \frac{1}{2} \sum_{m} \frac{\left(d_m - \left[\delta + \varepsilon(\gamma)_{i,j}\right]\right)^2}{\left(\sigma_o^2\right)} + \frac{1}{2\left(\sigma_b^2\right)} (x - x_b)^2$$

 δ,γ - Estimation

δ, γ - Estimation

NOAA-15 AMSU channel 8

Advanced Sounders Workshop 28 June-1 July

δ, γ - Estimation

NOAA-15 AMSU channel 8

 δ,γ both well determined without prior

δ ,γ; NOAA-16 AMSU-A channel 13

δ, γ ; AQUA AIRS channel 1403 $\lambda = 7.67/1303.8$

$[\delta,\gamma]$ estimates 650-750 cm⁻¹

[δ,γ] estimates 650-750 cm⁻¹ : Pressure ordered

June-1 July 20 00 Advanced Sounders Workshop

[δ,γ] estimates 750-1150 cm⁻¹

$[\delta, \gamma]$ estimates 1150-1600 cm⁻¹

[δ,γ] estimates 2170-2310 cm⁻¹

[δ,γ] estimates 2170-2310 cm⁻¹

June-1 July 28 Advanced Sounders Workshop

Assimilation results, δ, γ ; 15 um band: AI

Cycle 26R4 δ,γ from 2003/06 Experiments: 2003/06/01-22 + 2004/01/01-22 Control: Global fixed bias [δ =b, γ =1] (operational) from 2002/11

Assimilation results, δ, γ ; AI

June-1 July 200 Advanced Sounders Workshop Assimilation results, δ, γ

•The $[\delta, \gamma]$ adjusted RT model reduces analysis increments and improves the mean fit of the assimilation to radiosonde data

Assimilation results, δ, γ

Assimilation experiment: scores

- Modest improvement in f/c scores with $[\delta, \gamma]$ correction
- No areas degraded
- Best improvement in SH
- Lost the plots!
- Significance testing on improvements:

Geopotential AC	N. Hemisphere		S.Hemisphere		Europe	
Forecast period	500mb	200mb	500mb	200mb	500mb	200mb
Day-1	5%	5%	0.5%	0.1%	0.1%	2%
Day-3			2%	1%	5%	
Day-5	10%		2%	2%		
Day-7	2%			10%		

[δ,γ] Limitations

- AIRS
- Seasonal stability of estimates poor (<50% variation),
- O-B statistics good
- Scores better than fixed δ correction
- (airmass regression not fully tested)
- More rigorous estimation procedure:
 - Cycle by Cycle updates over one month ('towards Dee'..)
 - Stable estimates
 - Poorer scores

- AMSU-A
- Seasonal stability of estimates good (<10% variation)
- O-B statistics good
- Scores poorer than airmass regression correction
- Somewhat imperfect implementation (interaction with scan-bias)?

Summary

- Biases moderate < 1K; variation small < 0.5 K
 - Little temporal variation
 - Significant geographical / airmass variation
- Most channels biases first order behaviour accords to a simple transmission error.
 - Exceptions:
 - N₂ absorption area 2300 cm⁻¹
 - Channels affected by NWP high level errors
 - Window channels
 - Provides a reasonable correction mechanism if added constant used.
- A step in the right direction?
 - More emphasis on physical modelling of 'bias' errors:
 - [δ,γ] + (RT modeller expertise) = [better physical model]?
 - NWP environment provides excellent RTM verification opportunities
 - Complementary to local intensive effort (e.g. ARM)
 - Useful *feedback* to RT even if regression methods remain as operational bias correction