Is Anders Right?

With thanks to Roberto Buizza, Renate Hagedorn, Martin Leutbecher, Andy Lawrence, Lenny Smith

Probability Distribution of Truth

$$
\rho(X, t)=\Lambda\left(t, t_{0}\right) \rho\left(X^{\prime}, t_{0}\right)
$$

The Liouville equation (Ehrendorfer, 2006). In practice solved using ensemble prediction techniques
A perfect EPS is a random drawing from $\quad \rho(X, t)$
©ECMWF

Scientific Basis for Ensemble Prediction

In a nonlinear dynamical system, the finitetime growth of initial uncertainties is flow
© $\mathbf{C E C M W F}$ dependent.

In a perfect EPS...

$\rho\left(X, t_{0}\right)$

$$
\rho(X, t)
$$

.."e" and " t " are drawings from the same underlying probability distribution. Therefore "e" and " t " have the same expectation values. In particular:

$$
\Rightarrow\left\|e-e_{m}\right\|=\left\|t-e_{m}\right\|
$$

Implies the spread should match the skill for a good EPS!!

Spread and ens mean error, N-Hem T850

BECMWF

Spread and ens mean error, N-Hem Z500

TL255 L40 (cy29r2 oper. Config.), 45 cases (July 2004-June 2005)

BECMWF

EPS spread/Error

Time series curves

Reduce spread \Rightarrow Reduce Skill

29 cases in April/May 2005, both experiments cycle 29r2
BECMWF

A Perfect EPS

$$
\Rightarrow\|e-t\|=\sqrt{2}\left\|e_{m}-t\right\|
$$

In the short range..

$$
\begin{aligned}
& \|e-t\|=\sqrt{2}\left\|e_{m}-t\right\| \\
\Rightarrow & \|e-t\|=\sqrt{2}\|c-t\|
\end{aligned}
$$

Probability Distribution of Truth

Next week

$\operatorname{cosan}(x)$

Probability Distribution of Truth

Here (eg Heathrow)

There (eg Washington)

NH: ROC Area for ($f>c$) $-d+3, d+5$ and $d+7$

NH: diff averaged pert-members and CON - d+5, d+7 and d+9

©ECMWF

Determinis			Ensemble forecast of Lothar (surface pressure) Start date 24 December 1999 : Forecast time T+42 hours						

OECMWF

- mem no. 21 of 51 +66 h

 in the wings

re EPS perturbations

*Leading singular vector temperature cross-section (along $50^{\circ} \mathrm{N}$)
\& for $23^{\text {rd }}$ December 2003

The most accurate calculation possible of the initial perturbation which at $\mathbf{D + 2}$ has optimal projection on the leading eigenvector of the forecast error covariance matrix (cf Ehrendorfer and Tribbia, 1997)

Weather Roulette

Collaboration with L.Smith, LSE

- London-Heathrow, $2 m$ temperature
- 2002: training data for dressing
- 2003: test data
- odds: set by dressed T511 forecast
- bets: placed by best member dressed EPS
- start capital: £1 (re-invest all money, unlimited stakes)

Weather Roulette

Weather Roulette

Bootstrapping Results

Lagged deterministic ensembles at SMHI - a good

 idea?* Small ensemble sizes (poor probabilistic resolution)
* Control cannot be recovered from perturbed ensemble
* The effective perturbations are not independent (ie not orthogonal). Fewer phasespace directions spanned than equivalent size EPS.

Ens. Mean error and covariances of forecast errors

Data: N-Hem extra-tropics, Z500, DJF04/05, daily, forecast step 120h errors normalised with stdev of control fc error

EPS

	cf	1	2	pf 3	pf	
	1.00	0.78	0.79	0.80	0.79)
2	0.78	1.79	0.86	0.90	0.90	0.92
pf 3	0.79	0.86	1.90	0.90	0.97	0.91
pf 4	0.80	0.90	0.90	1.87	0.95	0.91
pf 5	0.79	0.90	0.97	0.95	1.94	0.96
	0.78	0.92	0.91	0.91	0.96	1.81

lagged cf ens

Oh=cf 12h		24h	36h	48h	60h	
1.00	0.86	0.78	0.72	0.67		Oh
0.86	1.28	1.08	0.97	0.89	0.83	12h
0.78	1.08	1.61	1.33	1.18	1.07	24
0.72	0.97	1.33	1.99	1.59	1.40	36h
0.67	0.89	1.18	1.59	2.39	1.84	48h
0.65	0.83	1.07	1.40	1.84	2.79	

RMS error of the ensemble mean $=\left[1 / n^{2} x\right.$ sum of matrix entries $]$

\# member	2	3	4	5	6
lagged cf	1.00	1.02	1.04	1.07	1.09
EPS	1.04	1.03	1.02	1.02	1.01

ROCA $\boldsymbol{\pi}[(f-c)>\sigma], \pi[(f-c)<-\sigma]$, EPS\&HHL - Z500 NH, win04/05

Top - Area under the Relative Operating Characteristics (ROCA) for the probabilistic prediction of a positive anomaly larger than 1 climatological standard deviation: the EPS (red line) has a higher ROCA than the HHL (blue line).

Bottom - Area under the Relative Operating Characteristics (ROCA) for the probabilistic prediction of a negative anomaly smaller than 1 climatological standard deviation: the EPS (red line) has a higher ROCA than the HHL (blue line).

BSS $\boldsymbol{\pi}[(f-c)>\sigma], \boldsymbol{\pi}[(f-c)<-\sigma], E P S \& H H L-Z 500$ NH, win04/05

Top - Brier skill score (BSS) for the probabilistic prediction of a positive anomaly larger than 1 climatological standard deviation: the EPS (red line) has a higher ROCA than the HHL (blue line).

Bottom - Brier skill score (BSS) for the probabilistic prediction of a negative anomaly smaller than 1 climatological standard deviation: the EPS (red line) has a higher ROCA than the HHL (blue line).

How many members better than control - perfect

 EPSAssume an "ensemble" given by an isotropic Gaussian distribution about a control in n dimensions. Further assume a perfect ensemble scenario, i.e. the error of the control is also given by this Gaussian distribution. What is the probability ρ of a perturbed member (a draw from the Gaussian) to be closer (in the Euclidean norm) to the true state than the control?

n	1	2	3	4	5	10	20	50	100
ρ_{n}	0.35	0.28	0.22	0.18	0.16	0.07	0.02	4×10^{-4}	1×10^{-6}

\% of pert-mem better than con for different areas - Z500

Assume an "ensemble" given by an isotropic Gaussian distribution about a control in n dimensions. Further assume a perfect ensemble scenario, i.e. the error of the control is also given by this Gaussian distribution. What is the probability ρ of a perturbed member (a draw from the Gaussian) to be closer (in the Euclidean norm) to the true state than the control?

n	1	2	3	4	5	10	20	50	100
ρ_{n}	0.35	0.28	0.22	0.18	0.16	0.07	0.02	4×10^{-4}	1×10^{-6}
			\uparrow						
		Sub-Europe				Europe			NH

Predicting spatial error covariance

(a) ensemble covariance

Forecast error cov., explained by linear fit

forecast variable	lead time	ensemble covariance	mean past covariance	both predictors
500 mb GP	96 h	6.9 ± 0.5	2.0 ± 0.2	7.2 ± 0.5
500 mb GP	168 h	16.5 ± 0.5	3.8 ± 0.2	16.5 ± 0.5
500 mb GP	240 h	18.9 ± 0.6	5.6 ± 0.2	19.2 ± 0.6
2 m TMP	96 h	5.4 ± 0.9	4.8 ± 0.4	9.1 ± 0.8
2 m TMP	168 h	9.6 ± 0.5	3.9 ± 0.3	11.1 ± 0.5
2 m TMP	240 h	16.7 ± 0.7	5.1 ± 0.3	17.7 ± 0.7

Roulston, 2005

Conclusions

* Spread must balance skill for a good EPS. Reducing spread reduces probabilistic skill.
* ECMWF has the best balance of current operational systems (Buizza et al, 2005) but is not perfect. Representation of model uncertainty still a factor.
* Stamp maps show equally-likely random drawings from initial PDF.
* Singular vectors using full 4DVAR analysis error covariance matrix are similar to energy-metric singular vectors, therefore the latter are consistent with analysis error statistics
* Lagged ensemble will under-perform against EPS because of poor ensemble size and correlation between effective nefsembfe perturbations.

Spread-Error for Three Operational Ensemble Forecast Systems

NH 500 mb Height
Average For 00Z01MAY2002 - 00Z31JUL2002
dot-spread solid-rms

May-June-July 2002 average RMS error of the ensemble-mean (solid lines) and ensemble standard deviation (dotted lines) of the EC-EPS (green lines), the MSC-EPS (red lines) and the NCEP-EPS (black lines). Values refer to the 500 hPa geopotential height over the northern hemisphere latitudinal band $20^{\circ}-80^{\circ} \mathrm{N}$. Buizza et al (2005)

Reduce spread \Rightarrow Reduce Skill

29 cases in April/May 2005, both experiments cycle 29r2
©ECMWF

How many members should be better than the control on average?

©ECMWF

* We should expect mean rms error of perturbed EPS members to be up to 40% worse than the control - this is part of the required spread/skill balance
* Counting the number of perturbed members better than the control is not a useful diagnostic of EPS performance - it is a function of the number of degrees of freedom in the underlying flow.
* What is the right way to compare the EPS vs deterministic forecasts (eg in assessing what fraction of the operational computational resource should be devoted to the EPS compared with the high-res deterministic)?

Ensemble Mean

ACC PT2000 Europe2004-2005_600-605 at 122 (365dates). Data trunctated to T63
Diamond = significance at 5% level using a 2 -sided, 2 -simpled, AF (1) t-test

-T511 det
4 signbest

© sig.best

EPS competitive with or better than the T511 throughout the range, in terms of θ on $\mathrm{PV}=2$ (where nonlinear filtering of unpredictable scales by EPS begins early in the forecast range)

