

Richard Bosworth

Data Processing Systems

Maintenance and Engineering

EUMETSAT Overview

- EUMETSAT is currently operating 5 operational spacecraft
 - Meteosat 6, 8 and 9 over Europe and Africa
 - Meteosat 5 and 7 over the Indian Ocean
- The data, products and services from the EUMETSAT satellites make a significant contribution to weather forecasting and to the monitoring of the global climate

EUMETSAT Overview

- EUMETSAT maintains an archive of data from 3 Meteosat Programmes
 - Meteosat Operational Programme
 - Meteosat Transition Programme
 - Meteosat Second Generation
- EUMETSAT archive is important component of climate research
 - 30 years of operations
 - 78 years combined imagery

EUMETSAT Satellites

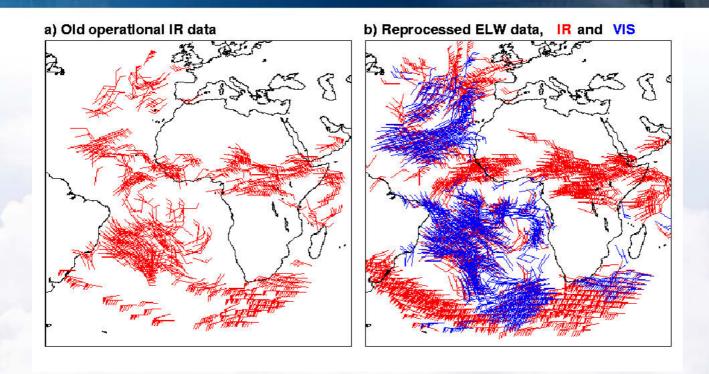
 Meteo 	sat-1	1977 –	1985
---------------------------	-------	--------	------

Unified Meteosat Archive (UMARF)

- All first generation data transcribed from tape
- Image data live on disk:
 - 300 Terabytes
 - Approximately 1 millions Images
 - Approximately 3 millions Met. Products

Current Reprocessing Facilities

- Meteorological Products Extraction Facility (RMPEF)
 - Reprocessing of historical Meteosat images for climatological purposes
 - System developed from operational platform
 - Enhanced "Real Time" system



RMPEF Aims and Customers

- Reprocess historical images using "best" algorithms
- Customers
 - NWP centres (e.g. ECMWF, JMA)
 - The "Calibration Community"
 - Max Planck Institute / Joint Research Centre for Meteosat Surface Albedo

Improved products from reprocessing

- Larger geographical area (spatial)
- More products per day (temporal)
- Additional channel information (physical)

Limitations of current system

- RMPEF "Real Time" system not appropriate solution
 - Unstable
 - High level of user interaction
 - Very old code base
- Unable to overcome performance limitations
 - HP PA-RISC hardware
 - Operational features not required for reprocessing

Limitations of current processing

- Analysis of image data requires improvement
- WV calibration requires improvement
- Extraction of image data too slow (bottle neck)
 - Solved through use of SNI

- Re-design of the process control infrastructure
 - New system framework
- Re-implement algorithms inside new framework
- Remove wasteful operational features
 - Error, event and parameter logging
- Re-design product generation scheduling system

- New framework
 - "Platform independent" C++
 - Scalable to fit available hardware
 - Capable of grid computing
 - High level of monitoring and control
 - Interface to legacy FORTRAN4/77 code

- Initial requirement for 12x performance increase
 - We now process 12 days in 24 hours per machine
 - That is 1 year in 2 weeks with 3 machines
 - Aim for 1 year per 24 hours one 1 machine
- Developed for a 8 processor server
- Can later be used on reclaimed hardware
- Improved performance remains limited by:
 - Single process algorithm, each with single thread
 - Algorithm feedback

- Framework ready for implementation
- Algorithm modification in 3 stages
 - Implement non-image related processing
 - Calibration
 - Implement simple algorithms
 - Scenes analysis and segment processing
 - Meteosat Surface Albedo
 - Implement complex algorithms
 - Atmospheric Motion Vectors

Future Application of Reprocessing Framework

- Use of MTP RMPEF in Routine Operations
 - Scheduled for 2008
- Use of RMPEF framework for MSG MPEF
 - Scheduled for 2009/2010

Future Application of Reprocessing Framework

- Use in Meteosat Second Generation:
 - Operational processing of real-time image feed
 - Use as development and test platform
 - Replaces stubbed test harness
 - Identical to operational platform
 - Reprocessing of archived level 1.5 data
- Framework identical for all MPEF processing

From User Requirements to Final Product

- Use of framework based system for development
- Process new algorithm in reprocessing mode
- Validate output against long-term statistics
- Release new algorithm to operations in shorter time

Externally Developed Algorithms

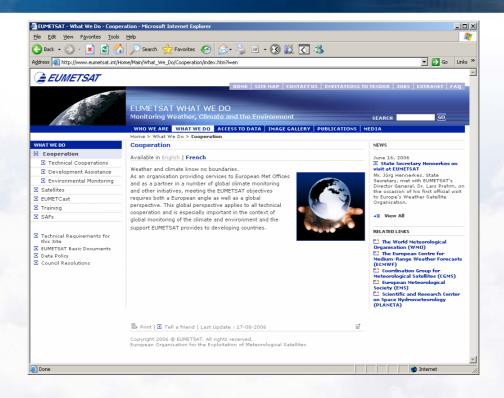
- Possible to integrate 3rd party algorithms
 - Release RMPEF API to external agencies
 - Provided for scientifically validated algorithms
 - No ad-hoc tests
 - Allows external users processing access to UMARF
 - For example Satellite Application Facilities

Other Reprocessing Systems

- Reprocessing MSG Image Processing Facility (RIMPF)
 - Designed as part of operational IMPF
 - Migration from Tru64 to Sun AMD64 in 2006/2007
 - Target of 8 processor machine
 - Possible application to all archived images
 - MSG images
 - MOP and MTP images

Reprocessing IMPF

- Application of latest MSG algorithms to all images
- Consistent image set across all spacecraft
- Could initiate re-run of MTP RMPEF reprocessing



Reprocessing Facilities in EUMETSAT

- Limited to small systems
 - Physical space
 - Power availability
 - Financial budget
- Limited by algorithm feedback
- Hence design of flexible framework for algorithms
 - Use small systems and reclaimed systems

Further information

- •http://www.eumetsat.int/
- •http://en.wikipedia.org/wiki/EUMETSAT
- •http://en.wikipedia.org/wiki/Meteosat

