

Preparing the "Lokal Modell" for Next Generation Regional Weather Forecasting and Computing

Ulrich Schättler, Elisabeth Krenzien, Henning Weber

Deutscher Wetterdienst

Contents

- LM and NWP in the last decade
- Next generation regional weather forecasting
- Upcoming events
- Outlook

LM and NWP in the last decade

FE 13 / TI 15

The "Lokal Modell"

- The nonhydrostatic regional "Lokal Modell" (LM) was developed at DWD in the late 90s
- LM is now used and further developed by the "Consortium for small scale modelling" (COSMO)
- LM is also used by third parties for NWP and other applications (see Outlook)

AdW, Prag

AWI Bremerhaven

CLM Community: Meteorological Landscape

CIRA, Capua **BTU Cottbus** CMR, Kroatien ETH Zürich DLR Oberpfaffenhofen **FUB Berlin** FZK Karlsruhe FZ Karlsruhe IfT Leipzig **GKSS** Geesthacht **INM** Valencia Uni Göttingen ETH Zürich Uni Bonn **EPF** Lausanne **MPI-M Hamburg** Met Service Israel 8 (M&D) Met Service Turkey **MPI-C** Mainz MPI-C Mainz **PIK Potsdam** University College Dublin Wegener Center Graz Universities: Berlin, Bern, Bonn, Köln, Dresden, Frankfurt, Genua, Hannover, Hohenheim, Karlsruhe, Kiel, eipzig, Mainz, München FE 13 / TI 15 HPC Workshop / ECMWF 30.10.-03#11.2000 5

FE 13 / TI 15

Why did we need it

- T3E (1997-2002)
 - LM with $325 \times 325 \times 35$ gridpoints, 7 km resolution
 - One of the first operational non-hydrostatic models
 - Further developments, mainly in the physics (prognostic turbulent kinetic energy)
- IBM pwr3 (2002-2005)
 - Introduction of prognostic cloud ice
 - Introduction of prognostic rain and snow
 - Started with the development of a new dynamical core

Prognostic Rain and Snow

without

Observations

with

20.02.2002 +6-30 h, LF_SL, prec

GrADS: COLA/IGES

2004-02-09-09:46

GrADS: COLA/IGES

2003-12-23-13:32

FE 13 / TI 15

Why did we need it (II)

- IBM pwr5 (2005-2006)
 - LM-E with 665 \times 657 \times 40 grid points, 7 km resolution
 - Development of a "nowcasting" version of the LM: LM-K
 - New dynamical core based on Runge-Kutta methods with higher order in space and time
 - For 7 km: $dt_{RK} = 72s \text{ vs. } dt_{LF} = 40s$
 - For 2.8 km: dt_{RK} =30s vs. $dt_{LF} \approx 10s$
 - Latent Heat Nudging of Radar Data
 - Graupel scheme, Lake model, shallow convection

Precipitation RADAR

LM

LM-K Testsuite

HPC Workshop / ECMWF 30.10.-03.11.2006

3

5

10

15

20

25

0.5

50

80

30

Why did we need it (III)

- 2 ×IBM pwr5 (from 2006 on)
 - Divided operations and development
 - Pre-operational LM-K runs:
 - $421 \times 461 \times 50$ grid points, 2.8 km resolution
 - Running 8 times a day for 21 hours
 - And also development work has increased

Historical Summary: Additional compute performance was used for bigger domains, higher resolution and more expensive algorithms

Scheduling of operational Jobs

Next generation regional weather forecasting

FE 13 / TI 15

Model Development in the next years

- Higher resolution:
 - Possible; but uncertain
 - Perhaps need totally different physics
- Bigger domains
 - possible; what does the customer need?
- More sophisticated algorithms
 - Definitely
- And: Ensemble Prediction Systems

Why Ensemble Predictions?

- Weather predictions are NOT determinstic!
- Small fluctuations in the initial conditions lead to large differences in the prediction
- An ensemble of many predictions with different initial conditions gives us the probability for a certain weather situation

Example: Temperature "plume" for Mainz

Development of a regional EPS

- Work has started in COSMO (there is some experience by COSMO-LEPS)
- Scientific question: how to make the members different
 - Disturbing initial and boundary conditions
 - Changing the physics
 - Using different external parameters
- How many members do we need?

Development of a regional EPS (II)

- We definitely need more computing power
- And the boring part of the story:
 - This is embarrassingly parallel
 - The program paradigm used (MPI) is still sufficient
 - We do not go towards a Peta-Flop computer (at least not in the near future)

FE 13 / TI 15

Replacement of Computing Center

- To run 20-40 members of a LMK ensemble, we aim at a performance enhancement by a factor of 15, giving about 100 Tflops peak
- An invitation to tender will be issued later this year
- The new machines will be put in a new building
- There will be 2 phases for the procurement (with performance(phase2) ≥ performance(phase1)

Compute Server Requirements

- Two independent compute servers (one for operations, one for research)
- Research machine is backup for the operational server
- Each 5 Teraflop/s sustained performance (measured with LM-RAPS benchmark)
- Additional 10% of peak for serial and interactive applications
- 200 TB storage (I/O: 2 GB/s in, 2 GB/s out)

Availability of the operational server: at least 99.8% per month (1,5h downtime)

Peak TFlops at DWD

LM_RAPS_4.0

- A new LM_RAPS distribution will be used to measure the performance
- New features of LM_RAPS_4.0
 - Consolidated Runge-Kutta dynamical core
 - Modifications to physical parameterizations
 - Bigger amount of data for output (some variables written every 15 minutes)
- LM-K will be the main test job

LM_RAPS_4.0 – First Results

LM-K 421 × 461 × 50 grid points; 6 h forecast on pwr5 (DWD), pwr5+ (ECMWF), NEC SX6

# Nodes	4	8		16		32	
		4		8		16	
# (log.) CPUs	1×4	8×8	8×16	8×16	16×16	16×16	16×32
Total Time	3805.06	1556.76	1099.94	783.24	589.04		
		1624.83	1244.53	889.04	699.87	494.49	405.10
Computations	3432.55	1096.06	878.78	523.80	418.97		
		1181.63	1011.24	566.11	489.07	292.75	234.15
Communi-	304.78	411.46	163.06	218.06	109.22		
cation		406.31	181.81	292.61	164.17	170.10	116.07
I/O	37.03	41.38	50.06	34.98	50.92		
	only Inp.	33.20	45.37	26.31	40.49	27.84	48.43

$LM_RAPS_4.0 - Some Flop/s$

LM-K 421 × 461 × 50 grid points; 6 h forecast on pwr5 (DWD), pwr5+ (ECMWF), NEC SX6

# Nodes	4	8		16		32	
		4		8		10	
# (log.) CPUs	1×4	8×8	8×16	8×16	16×16	16×16	16×32
Flop (10 ¹²)	45.9	46.9	47.7	47.8	48.7		
		45.6	46.2	46.5	47.4	47.7	49.5
Flop per grid point and step	6581.45	6723.19	6827.65	6842.67	6972.29		
		6527.39	6624.65	6664.70	6792.09	6835.44	7087.05
GFlop/s	12.3	30.1	43.3	60.9	82.5		
		28.0	37.2	52.3	67.7	96.4	121.8

Procurement Schedule

FE 13 / TI 15

Other LM Activities

- DWD will not need a petaflop computer in the near future, but:
 - CLM: LM is also used as a regional climate model (see: http://www.clm-community.eu)
 - For example: 150 years for several (!) climate scenarios.
 One run takes about 300 days on a NEC SX6 node
 - LM and chemistry: The Karlsruhe Research Institute will provide a chemistry model (LM_ART) for online coupling to the LM. This adds about 100 additional prognostic scalar variables (up to now: 5 dynamical and 6 scalar variables)

More Activities

ICON (ICOsahedral Nonhydrostatic model development of DWD and MPI-Met in Hamburg) with local zooming option

There will be "petaflop applications" also in NWP in some years time.

Are we ready then?

FE 13 / TI 15

