
Halo Exchange Scalability on
a Flat Switch

George W VandenBerghe
NOAA/NCEP
Oct. 31, 2006

Salient Points
• Examines scalability of finite difference

exchanges and full domain transposes on a
“Flat” interconnect.

• “Flat” means cpu to cpu transfer metrics are
independent of other activity between other cpu
pairs.

• IBM clusters are approximately “Flat” to 200 switch interfaces.. Then flatness approx begins to break down a little.
• Federation xfer rates scale linearly to 4 cpus/node, maximize at 6 or so.

• Halo exchanges are very very scalable but scalability declines with
square of halo depth.

• Domain transposes are expensive, scale linearly to ~1000
processors but alltoall scaling breaks down rapidly with further
taskcount increases.

Halo Exchange Scalability
• Halo exchange exchanges a grid perimeter with

neighboring tasks.
• Define length X, memory stream rate Mr, Switch stream

rate Sr, and latency L
• Perimeter is 4X
• Interior points are X**2
• Buffer build is ~12X /Mr (memory stream rate) (2X for left

and right columns, 2*5*X for top and bottom rows which
generate strided reads.

• memory sweep is X*X/Mr
• Xfer is 4(X/Sr + L) (latency) and exchange is 2Xfers
• latency is ~10usec. Mr~10**3/usec. Sr is Mr/1.3
Latency dominates for messages <10K.

HALOS
• Buffer build is ~12X /Mr (memory stream rate) (2X for left and right columns, 2*5*X for top and bottom rows which generate strided reads.
• memory sweep is X*X/Mr
• Xfer is 4(X/Sr + L) (latency) and exchange is 2Xfers (one for sends and one for receives)
• Buffer extract is another 12X /Mr

• Total cost is (12X/Mr+4(X/Sr + L)) *2
• 24X/Mr+8X/Sr+8L or 8(3X/Mr+X/Sr+L)
Consider case where interior work scales to 1 Memcopy (cheap) or ten

memcopy operations (realistic for really good code)
Number of memcopies is Nc and the comms:work ratio is
24X/Mr+8X/Sr+8L : Nc*X**2/Mr

P4 federation numbers at NCEP are
MR=1000b/usec SR=700b/usec L=10usec. Factor out Mr
24X +80/7X +8LMr : X**2 (single memcopy)
24X +80/7X +8LMr :10X**2 (ten memcopy)
X is ~91 for ten copy and ~300 for single copy

Simple Grid Exchange Case

• Consider 4GB domain Cell decomposition
• 5 state vbl 100 levels
• 500 8mb grids.
• If we exchange grid by grid
• X was 300 X**2 was 90000

Ntasks=8K/90=~88
• X(10memcopy)=91 X**2=8000
• 8M/8K=~1000

Buffer Consolidation
If we replace the grid side buffers with domain side buffers
(consolidate all 500 grid sides into one buffer).

500(24X +80/7X +8LMr) : 500(X**2) (single memcopy)
500(24X +80/7X)+8LMr : 500(10X**2) (ten memcopy)

8LMr=80000 8LMr/500=160

L(1mem)=40 8e6/1600=5000
L(10mem)=6. 8e6/36=2.2e5

So by consolidating buffers this is very scalable.

Deep Halos
• For halo depth 2. Exchange of

24X +80/7X +8LMr
Becomes
2(24X+80/7 X) +8L*Mr +8 +8L*Mr
Terms in Red represent corner point transfers.
Larger halo depth corner transfer is
8(Hd-1)**2 +8L*Mr where Hd is the halo depth.
Scalability decreases rapidly with halo depth.

Deep Halos
Roots of WX**2 +bX – c (-b+-sqrt(b**2 +4*W*c))/2W
When C dominates X =sqrt(c/w) X decreases by 1.4 for

every doubling of w.
When b dominates X ~+-b**2/2W
X ~1/W
Taskcount and scalability are inverse of X**2.
Halo depth increase H effectively divides W by H
Latency dominated case.. Scalabilty declines linearly with

halo depth.
Halo interior:boundary dominated case, scalability declines

with square of halo depth.

One Big Problem
• Previous analysis assumes no load imbalance.
• In NWP Physics packages this is just not true!
• Two not real good alternatives around this
• a. Dynamic decompostion, cell size depends on

workload.. Tedious to code.
• b. Monte Carlo transpose. Each cpu gets random

assortement of points for the physics.
• (This presenter liked b until creating the next five slides)

• C. Tolerate it. Only true if ratio E of most expensive to
least expensive points is small (<10), Toleration cuts
scalabilty by this factor for latency dominated cases and
SQUARE of this factor for perimeter:interior dominated
cases..

Domain Transposes
• For grids, comms to work ratio was dominated

by kX:X**2 term where k was fairly large (36)
but overall for large enough problems, X**2
dominated.

• Domain transposes are expensive at all
taskcounts but do scale (today)

• Domain transpose comms:work dominant term
is kX**2:X**2. (the entire domain is moved by
a transpose, not just edges) (next slides will
obtain a value of 5.6 for k)

How do the Transposes run

• Domain transposes today are implemented with
MPI_ALLTOALL (or alltoallv)

• Domain of size D on N processors breaks up
into D/N (or d) sized pieces.

• To transpose, d is broken down into N pieces
and each piece is sent to a different task. The
N pieces needed for the new decomposition are
then received, one from each processor.

• This method is competitive to ~10**3 tasks.

Transpose Cost
• Define DOMAIN D, Subdomain sd, taskcount N
• 1 Buffer build. Full sd transpose, periodic

gather, cost is 5sd/Mr (5 comes from 5x
slowdown doing out of cache gather)

• 2 Xfer. sd/SR or 1.3sd/Mr
• 3 Buffer extract 5sd/Mr.

• Buffer build and extract dominates cost.
• (In reality this problem does use cache better

than assumed above)

Transposes
• Transpose cost 5sd +1.3sd +1.3sd

+5sd.(factored out 1/Mr)
So the minimum transpose cost is 12.6 memcopy

operations (?? !).
This is pessimistic and assumes we can’t

somehow block the buffer build. Blocking
reduces that factor of 5 to perhaps 1.5 or 2.

If we do this cost reduces to 5.6sd
Whatever that constant is it is a constant overhead

at ALL taskcounts, even 2 (or 1).
This assumes no latency.

Considering Latency.
• Cost with latency is
1.5sd + N(1.3sd/N + LMr) *2 since we are dividing

the subdomain sd into N pieces to send to the N
other tasks.

• At high taskcount latency dominates since
latency cost scales with N.

• 4GB domain example N=4000 sd=1mb
sd/N=250b. 4000L=40000usec *2=80msec or
.08sec Sd/Mr=.001sec. 1.3Sd/Mr=.0013.

• This problem needs very low latency or a better
transpose algorithm (binary tree comes to mind)

Numbers
• Small taskcount transpose overhead is 5.6memcopy.
• Consider interior work as W mcopy ops.
• Base runtime is 5.6+W or Ba
• Define scalability limit as count where performance degrades by

factor of two from base.
• NLMr=Ba*sd = Ba*D/N
• N**2 = 1/Mr *Ba*D/L.
• For D=4GB, L=10usec, W=10, Mr=1000 Ba=15.6
• 4e9*15.6/(10*1000)=6.2e6 N=sqrt(6.2e6)=~2500
• Alternate scalability limit
• T(N) is minimum dT/dN = 0
• T=Ba*D/Mr +LN =Ba*D/(N*Mr) +LN
• dt/dn= L – Ba*D/(N**2MR) which is zero for N=sqrt(Ba*D/(Mr*L))

Alternatives??

• We don’t have the machines yet to
motivate alternatives to alltoall methods.

• NCEP uses 1D decomposition in spectral
space (scales to truncation/2 tasks) and
threads to use ~10 cpus/task. T384 thus
scales to ~1900 cpus (190 tasks). The
alltoall exchanges between 190 (not
thousands) tasks.

Alternatives.

• Transpose by definition is extremely slow
anyway.

• Programmers have blocked transposes
and matrix multiplies since the 80s to
improve cache and vector performance.

• Compilers do this too.
• This author has done it in NCEP GFS

buffer build supporting Alltoall. Tripled
speed of MPI domain transpose.

Something to Try
Instead of alltoall between all tasks, break tasks

into blocks, do alltoalls inside the blocks, then
have some master cpu in each block to alltoalls
with the other masters with much larger
messages.

(this is only attractive when latency dominates)
With “only” 4000 cpus on a machine and only

1000 available to single apps, this isn’t attractive
yet.

Scaleability is of less interest when one runs 10**2
ensembles on 10**3 cpus (incidentally on 10**2
nodes)

Not Examined Here

• I/O
• Many to one operations.
• Single node global domain operations.
• Logarithmic or other switch topologies (this

may be a big deficiency)
• Global bisection bandwidth constrained

interconnects (LAN interconnect is
example)

Conclusions

• Both halo exchange and domain
transposes scale on current limited
taskcounts (10**3)

• Halo exchanges could be scaled to 10**5
or more tasks but load imbalance in
physics poses problems.

• Domain transpose scalability declines
rapidly beyond 10**3 tasks.

	Halo Exchange Scalability on a Flat Switch
	Salient Points
	Halo Exchange Scalability
	HALOS
	Simple Grid Exchange Case
	Buffer Consolidation
	Deep Halos
	Deep Halos
	One Big Problem
	Domain Transposes
	How do the Transposes run
	Transpose Cost
	Transposes
	Considering Latency.
	Numbers
	Alternatives??
	Alternatives.
	Something to Try
	Not Examined Here
	Conclusions

