The role of precision in meteorological computing: A study using the NMITLI Varsha GCM

T. N. Venkatesh and U. N. Sinha tnv@flosolver.nal.res.in

Flosolver Unit,
National Aerospace Laboratories Bangalore 560017, INDIA

Motivation / Outline

- NAL/ Flosolver
- Varsha GCM
- NMITLI project
- One Month forecasts of the monsoon rainfall

- Round-off errors
- Reproducibility/ Accuracy
- Remedy
- Compute with a higher

Monthly rainfall for MAY-SEPTEMBER 2005
 number of digits

National Aerospace Laboratories

- Founded in 1959
- Part of the CSIR chain of laboratories
- Premier civilian
 research laboratory in aerospace
- Multiple disciplines
- Pioneers in CFD and parallel computing in India

DNS of a jet

Flosolver Project

- Started in 1986
- CFD requirements of NAL
- First Indian parallel computer Sinha et al, Super Computer, 1988
- Six generations since then
- Focus: Fluid dynamics, Meteorology
- NAL FloSwitch
- $9^{\text {th }}$ ECMWF Workshop, 2000
- NAL FloOptiLink

Flosolver Mk5 : 2000
2 Nov 2006

$12^{\text {th }}$ ECMWF HPC Workshop

NMITLI project

- Government of India project
- Support for new, unconventional ideas
- Focus: technology development
- "Mesoscale modelling for monsoon related predictions"
- 2001-2006
- Flosolver Mk 6
- Varsha GCM

Flosolver Mk 6

Current / planned hardware

- 10 Tflops
- Processors
- Intel Xeon
- Opteron?
- Improved versions of FloSwitch/ FloOptiLink

Varsha GCM: History

- Spectral, hydrostatic GCM
- Origin : GCM T-80 of NCEP, NCMRWF
- Porting from CRAY code, Parallelization on Flosolver Mk3 (Sinha et al, Current Science 1994)
- Rewritten in Fortran 90: Nanjundiah and Sinha, Current Science 1998
- New features: BL module, radiation module, time stepping. Rao \& Narasimha JFM 2006, Venkatesh et al Mausam 2006 (Varsha 1.0)
- Rewritten in C: 2005-2006 (Varsha2C)
- Multi-precision version: 2006 (Varsha2C-MP)

Varsha GCM

- Mainly used for research
- Regular five day simulations/forecasts
- Since May 2005
- Initial conditions: NCEP FNL dataset
- For validation
- Resolution: 120, 512x256
- One month simulations/forecasts
- Monsoon rainfall
- 1986 - 2005: Reasonably good
- 2006 forecasts: Being assessed

All India Rainfall: AIR

Importance of AIR

All India Rainfall for 01 JUN - 30 JUN 2006 Predicted on 01JUN2006

Repeatability of results: Number of processors

All India Rainfall - July 2005
30 day simulation

Possible reasons

- Global sums
- One dimensional decomposition over latitudes in the parallel code
- Round off errors while adding up the partial sums
- ((A+B)+C)+D not equal to (A+B) + (C+D) in floating point computer arithmetic
- Random numbers used in the cloud calculations?

Round off errors: literature

- He and Ding : (ECMWF 2000)
- Global sums prone to round off errors
- Double-double precision
- Multi-precision (too hard)
- Bailey
- Vortex sheet role up simulations
- Multi-precision required

Repeatability of results: Different processors

All India Rainfall - July 2005
30 day simulation

Varsha2C

- VarshaC (C version)
- Passing of variables: Arguments / structures
- Type: real
- Changes in dynamics (time integration part)
- Better scalability
- Completed: June 2006 (7 Man months)
- Single/Double precision
- Time for code modification: ~ 1 week

Single precision

Double precision

2 Nov 2006

Single : order of summation

Double : order of summation

VarshaMP

- Multi-precision version
- Code change: ~ 45 days
- C / C++
- C++ compiler required
- Uses the ARPREC library
- New datatype mp_real
- All arithmetic operations, math functions overloaded
3.141 9265358970233846264338327950288419

716939 Mrabsed \boldsymbol{M} © 9230781640628
620899862803482534211706798214808611
323330644
$81284811 / 4 ; 0284162 / \sim 1938521105559 \$ 4$
462294895493038196442881097566593344
612047 토 B B B A $65271201909145 \$ 4$
856692346034861045432664821339360766
$0249141273724587006606315588174881 \$ 2$
09296 87 NuM M 364367892590360 1
1330530548820466521384146951941511\$0
Developed primarily for computing fundamental constants like Pi, etc.

main.c

```
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#ifdef MULTI PRECISION
    #include "mp_real.h"
#endl†
void agcm(int *,int *);
int main(int argc, char *argv[])
{
    int numprocs,myid;
    MPI Init(&argc,&argv);
    MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD,&myid);
#ifdef MULTI PRECISION
    mp::mp init(128);
#endif
    agcm(&numprocs,&myid);
#ifdef MULTI_PRECISION
    MPI_Barrier(MPI_COMM_WORLD);
    mp::mp finalize();
#endif
    MPI_Barrier(MPI_COMM_WORLD);
    MPI_Finalize();
    return 0;
}
```


Issues

- Input data : single precision
- Compiler issues
- Memory requirements
- Parallelization
- Debugging
- Run-times
- Restart

RESULTS

- VarshaC, VarshaMP:
- All India Rainfall
- 30 Day integrations
- Lower model resolution (T- 60)
- Lorenz system (1963 JAS)
- MPFUN90

Single, double, multi-precision

All India Rainfall - July 2005 (Varsha2C-Varsha2C-MP)
30 day simulation (4 PEs)

Comparison- 2

Computation with 32, 64, 128 Digits

All India Rainfall - July 2005 (Varsha2C-Varsha2C-MP)
30 day simulation (4 PEs)

Spatial patterns

Day 10

15

20

Day

 25

 30

64 digits: Different no. of PEs

128 digits: Different no. of PEs

All India Rainfall - July 2005 (Varsha2C-MP) 30 day simulation (MP-64)

Different platforms/ no. of processors

Repeatability of results: Single precision

All India Rainfall - July 2005
30 day simulation

2 Nov 2006

Significance to Chaos

- Lorenz system (1963) computed with the multi-precision
- Fortran version

$$
\begin{aligned}
\dot{x} & =\mathbf{s}(y-x) \\
\dot{y} & =\mathbf{r} x-y-x z \\
\dot{z} & =x y-\mathbf{b} z
\end{aligned}
$$

- MPFUN90 library used
- RK4 time stepping
- Computation with upto 2048 digits
- No significant change in the nature of solutions

Standard trajectory

Growth of perturbations

Nature of solutions

Time at which two trajectories diverge beyond 0.01 (initial difference is $1.0 \mathrm{e}-10$)

$D P$	31.89
$M P-16$	31.89
$M P-32$	31.89
$M P-64$	31.89
$M P-128$	31.89
$M P-512$	31.89
$M P-1024$	31.89
$M P-2048$	31.89

Role of precision

	20.000	30.000
DP	13.472905743363027	9.866860933476248
MP-16	13.47290574339619	9.866859443556267
MP-32	13.47290574339619	9.866859443550123
MP-64	13.47290574339619	9.866859443550123
MP-128	13.47290574339619	9.866859443550123
MP-512	13.47290574339619	9.866859443550123
MP-1024	13.47290574339619	9.866859443550123
MP-2048	13.47290574339619	9.866859443550123

Role of precision

	40.000	49.000
DP	-8.743318752850055	-5.574396101251091
MP-16	-8.534596463420804	8.690895354052055
MP-32	-8.534596443596334	8.690908640180727
MP-64	-8.534596443596334	8.690908640180727
MP-128	-8.534596443596334	8.690908640180727
MP-512	-8.534596443596334	8.690908640180727
MP-1024	-8.534596443596334	8.690908640180727
MP-2048	-8.534596443596334	8.690908640180727

Conclusions

- Multi-precision calculations done with a complete GCM (VarshaC-MP)
- (32, 64, 128 digits) ARPREC library
- Round off errors do play a significant role in long-term integrations
- Can get repeatable results across different processors and different number of processors if number of digits is greater than 64

Conclusions...

- Could have implications for ensemble runs
- Distinction between round-off errors and chaos should be made
- Multi-precision calculations: computing power/time required is very large
- Can use all the new supercomputer power which is going to be available
- Promising field of study

Thank you

