the hydrological cycle

in ERA40 and pre-interim tests and some consequences for the monthly climate

(conclusions in this colour)

ECMWF workshop on reanalysis June 19-22 2006

Per Kållberg, ECMWF

pre-interim experiments

•	ERA40	3D/Cy23	T159/N080/L60	195709-200208
•	0060	4D/Cy30	T255/N128/L60	198901-199012
•	0471	4D/Cy30	T159/N080/L60	199908-200012
•	1001	4D/Cy30	T255/N128/L60	198901-198906

Cy30 vs. Cy23

4D-Var/12h variational bias correction of satellite radiances improved bias correction of radiosondes major revision in humidity analysis many revisions to physics (cloud/radiation) ERA workshop June 19-22 2006

daily mean precipitation 1989-1990

GPCP

ERA40

0060

0060 – ERA40

GPCP

CECMWF

ERA workshop June 19-22 2006

ERA40

total precipitation 0001 monthly/daily accumulation. 198901 to 199012 +12h.

CECMWF

ERA workshop June 19-22 2006

0060

total precipitation 0060 monthly/daily accumulation. 198901 to 199012 +12h.

CECMWF

ERA workshop June 19-22 2006

0060 – ERA40

CECMWF

ERA workshop June 19-22 2006

precipitation in different regions

ERA40

GPCP 198901 to 199012 2-year mean. total precipitation

0060 better

total precipitation 0001 monthly/daily accumulation. 198901 to 199012 +12h.

GPCP 198901 to 199012 2-year mean.

0060 better

2 5

1.5

0.5

ERA40

DRA grou

residual run-off (mm/day) in North America 1989-1990

ERA40

residual runoff 0060 monthly/daily accumulation. 198901 to 199012 +12h.

0060

residual runoff 0001 monthly/daily accumulation. 198901 to 199012 +12h.

Annual mean precipitation 1989-1990

0060

drier minima in 0060

there was an interpolation error in the SST near the Antarctic coast in 0060

ERA-40

precipitation time series 1979-2002

GPCP

ERA40

0060

global precipitation (mm/day) 1979-2002

tropical (20°N-20°S) ocean precipitation (mm/day) 1979-2002

ERA40 0060 0471 1001 GPCP

now no increase from 1989-1990 to 1999-2000

Europe (land) precipitation (mm/day) 1979-2002

USA (land) precipitation (mm/day) 1979-2002

Indonesia (land) precipitation (mm/day) 1979-2002

Scandinavia (land) precipitation (mm/day) 1979-2002

ERA40 0060 0471 1001 GPCP

.

precipitation spin-up

spin-up of total precipitation 1989-1990

spinup of monthly/daily flux accumulations izonal mean over__land total precipitation 198901 to 199012

sea	+06h	+12h	+24h	+36h
ERA40	3.32	3.39	3.60	3.54
0060	-	3.15	3.27	3.31

globe	+06h	+12h	+24h	+36h
ERA40	2.99	3.07	3.25	3.17
0060	-	2.89	2.98	2.99

monthly precipitation (spin-up) 1989-1990 globally

0001 2-year (198901 to 199012) +12h

"P minus E"

spin-up of P-E 1989-1990

land	+06h	+12h	+24h	+36h
ERA40	0.78	0.85	0.94	0.83
0060	-	0.72	0.74	0.69

sea	+06h	+12h	+24h	+36h
ERA40	-0.10	-0.04	0.10	0.00
0060	-	-0.28	-0.16	-0.14

globe	+06h	+12h	+24h	+36h
ERA40	0.15	0.21	0.34	0.24
0060	-	0.01	0.10	0.10

atmospheric water and clouds

total column water vapour monthly mean 1979-2002 tropical oceans (20°N-20°S)

ERA40 0060 0471 1001

total column water vapour difference between 0060 and ERA-40 1989-1990

total column water vapour 0060 monthly/daily mean 198901 to 199012 differences to 0001 monthly/daily mean 198901 to 199012 kg/m² 20 16 13 10 7 5 4 3 2 1 0.5 -0.5 -1 -2 -3 -4 -5 -7 -10 -13 -16 -20

ERA workshop June 19-22 2006

total cloud cover difference between 0060 and ERA-40 1989-1990

ERA workshop June 19-22 2006

die cloud cor

cloud cover differences between 0060 and ERA-40 1989-1990

high clouds: less, particularly in the ITCZ, also less at high latitudes

middle clouds: somewhat less

low clouds: more near eastern shores ('upwelling') and over rainforests

zonal mean of the cloud fraction in %

20mb

energy balance

0060+012h mean= -23.27 0001+012h mean= -34.92 dim+012h mean= -35.73

1514

EQU

305

155

455

40 -35 -30 -25 -15 -10 -

100 90 N

CON

451

301

net T.O.A. energy exchange

global energy balances 1989-1990

W/m²	0060	ERA40	ERA40 23 year climate
top of atmosphere	-1.9	-7.4	-7.4
cloud forcing	-23.3	-34.9	-35.7
surface	+8.6	+4.6	+3.5

net surface cloud forcing

-20

-15

-20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80

-85 -90 -95

905-100

60S

surface energy balance 0060 1989-1990

net surface energy exchange 0060 monthly/daily accumulation. 198901 to 199012 +12h.

surface energy balance ERA40 1989-1990

net surface energy exchange 0001 monthly/daily accumulation. 198901 to 199012 +12h.

surface energy balance difference between 0060 and ERA40 1989-1990

Net surface energy exchange. 0060 2-year (198901 to 199012) +12h differences to ERA40 2-year (198901 to 199012) +12h

top-of-atmosphere energy balance difference between 0060 and ERA40 1989-1990

Top of atmosphere net energy balance. 0060 2-year (198901 to 199012) +12h differences to ERA40 2-year (198901 to 199012) +12h

differences 0060 - ERA40 in top soil

0060 drier and hotter in Sahara 0060 wetter and cooler in Sahel

the Walker circulation

annual mean 1989-1990

0001 anpl_moda monthly/daily mean.

0001 anpl_moda monthly/daily mean.

0060 anpl_moda monthly/daily mean.

conclusions (for 1989-1990)

- the precipitation is more realistic (according to GPCP) both in the tropics and at mid-latitudes
- no temporal trend in the total column water vapour nor in the precipitation
- no precipitation spin-up in the most recent test experiment (1001)
- global P-E in good balance (perfect in 0060+12h)
- 'more' Mississippi run-off in 0060
- less cirrus, especially in the tropics
- more stratus over the eastern flanks of the subtropical oceans ('upwelling')
- top-of-atmosphere energy exchange better (0060 -2 W/m² ERA40 -7 W/m²)
- Saharan soil is drier and warmer in 0060
- surface energy exchange worse (0060 +9 W/m² ERA40 +4 W/m²)
- somewhat stronger divergence at 150 hPa in 0060
- slightly weaker convergence at 1000 (and 925/850) hPa in 0060

the end