Verification of Categorical Forecasts

Pertti Nurmi

Meteorological Research & Development Finnish Meteorological Institute

Categorical forecasts of categorical variables

⇔ Binary (Dichotomous; Yes/No)

Examples

 \checkmark

- ✓ Rain vs. no rain
- ✓ Snowfall vs. no snowfall
- ✓ Strong winds vs. no strong wind
- ✓ **Night frost** vs. no frost
 - Fog vs. no fog

Categorical forecasts of categorical variables

⇔ Binary (Dichotomous; Yes/No)

⇔ Multi-category

🥘 Help

Contingency table

Event forecast	Event observed		
	Yes	Νο	Marginal total
Yes	Hit	False alarm	Fc Yes
No	Miss	Corr. non-event	Fc No
Marginal total	Obs Yes	Obs No	Sum total

Event forecast	Event observed			
	Yes	Νο	Marginal total	
Yes	а	b	a + b	
No	С	d	c + d	
Marginal total	a + c	b + d	a + b + c + d =n	

Artificial data

Categorical Forecasts

Date	24h forecast	Observatior	1
Jan 1	0.3		
Jan 2	0.1	Yes	
Jan 3	0.1		
Jan 4	0.7	-	
Jan 5	0.8	_ _	
		····	
Dec 27	0.8	Yes	
Dec 28	1.0	Yes	
Dec 29 /	0.9	Yes	
Dec 30 /	0.1	Yes	
Dec 31	0.1	-	
Event	E	vent observed	
forecast	Yes	Νο	Marginal total
Yes	> a	b <	a + b
No	→ c	d <i>«</i>	c + d
Marginal total	a + c	b + d	a + b + c + d =n

Verification history, Tornados in the U.S., 1884

(slightly modified Finley case)

Tornado	Tornado observed			
forecast	Yes	No	fc Σ	
Yes	30	70	100	2680 + 30 - 06 9
No	20	2680	2700	2800 = 90,8
obs Σ	50	2750	2800	

%

Categorical Forecasts

Tornado forecast	Tornado observed		
	Yes	No	fc Σ
Yes	0	0	0
No	50	2750	2800
obs Σ	50	2750	2800

98,2 %

NO false alarms – NO hits – HEAVY underforecasting !

Back to the original results:

Scores ...1

Event forecast	Event observed		
	Yes	No	Marginal total
Yes	а	b	a + b
No	С	d	c + d
Marginal total	a + c	b + d	a + b + c + d =n

Bias aka **Frequency Bias Index**

 $\mathbf{B} = \mathbf{FBI} = (\mathbf{a} + \mathbf{b}) / (\mathbf{a} + \mathbf{c}) \quad [\sim \text{Total fc Yes} / \text{Total obs Yes}]$

- With B > 1, the event is overforecast.
- With B < 1, the event is underforecast.

Proportion Correct

PC = (a + d) / n [~ (Hits + Correct non-events) / Total sample size]

- Most simple and intuitive performance measure.
- Usually very misleading because rewards correct "Yes" and "No" forecasts equally.
- Can be maximized by forecasting the most likely event all the time.

⇔ <u>Strongly influenced by the more common event</u>.

– Never for extreme event verification – Remember "Finley" !!!

Categorical Forecasts "Finley" Tornado observed Tornado forecast Yes No fc **Σ** Yes 30 70 100 20 2680 No 2700 50 obs **D** 2750 2800 B = 2.00PC = 0.97Range: 0 to oo

Perfect score = 1

<u>Scores</u> ...2

Event	Event observed		
forecast	Yes	No	Marginal total
Yes	а	b	a + b
No	С	d	c + d
Marginal total	a + c	b + d	a + b + c + d =n

Categorical Forecasts

"Finley"

Probability Of Detection, Hit rate, Prefigurance

POD = **H** = $\mathbf{a} / (\mathbf{a} + \mathbf{c})$ [~ Hits / Total obs Yes]

- Sensitive to missed events only, not false alarms.
- Can be artificially improved by overforecasting.
- Complement score Miss Rate, MR = 1 H = c / (a+c)
- Should be examined together with

False Alarm Rati<u>o</u>

FAR = b / (a + b) [~ False alarms / Total fc Yes]

- Sensitive to false alarms only, not missed events.
- Can be artificially improved by underforecasting.
- Improving POD is achieved by worsening FAR, and vice versa.

Range: 0 to 1 Perfect score = 1

Range: 0 to 1

Perfect score = 0

B = 2.00PC = 0.97 POD = 0.60 FAR = 0.70

Scores ...3

Event	Event observed		
forecast	Yes	No	Marginal total
Yes	а	b	a + b
No	С	d	c + d
Marginal total	a + c	b + d	a + b + c + d =n

Post agreement

$$PAG = a / (a + b)$$
 [~ Hits / Total fc Yes]

- Complement of FAR (i.e. = 1 FAR).
- Sensitive to false alarms, not misses.
- Not widely used.

False Alarm Rate, Probability of False Detection (POFD)

 $\mathbf{F} = \mathbf{b} / (\mathbf{b} + \mathbf{d})$ [~ False alarms / Total obs No]

- False alarms, given the event did not occur (obs No).
- Sensitive to false alarms only, not missed events.
- Can be artificially improved by underforecasting.
- Generally used with H (or POD) to produce the <u>ROC score for probability forecasts</u>!
- Otherwise rarely used.

$$\begin{tabular}{|c|c|c|c|c|c|}\hline \hline Tornado & observed \\\hline \hline Tornado & forecast & Yes & No & $fc Σ \\\hline \hline Yes & 30 & 70 & 100 \\\hline \hline No & 20 & 2680 & 2700 \\\hline \hline obs Σ & 50 & 2750 & 2800 \\\hline \end{tabular}$$

B = 2.00PC = 0.97 POD = 0.60 FAR = 0.70 **PAG = 0.30** F = 0.03

Range: 0 to 1 Perfect score = 0

Range: 0 to 1 Perfect score = 1

Scores ... Exercise_1

Categorical Forecasts

Frequency Bias, B ~ FBI

Reference: EUMETCAL Verification module

Below are two contingency tables representing two completely different sets of forecasts. The left hand table is for 151 Gale forecasts, and the right hand table is for 2800 forecasts of the occurrence of tornados in the US. Test your understanding of frequency bias using the question below the tables:

Gale forecast	Gale observed		
	Yes	No	fc Σ
Yes	15	2	17
No	11	123	134
obsΣ	26	125	151

Tornado forecast	Tornado observed		
	Yes	No	fc Σ
Yes	30	70	100
No	20	2680	2700
obs S	50	2750	2800

Which of the following statements correctly describes the bias of the two sets of forecasts?

- 😫 Gales and tornados are underforecast
- 😫 Gales are underforecast and tornados are overforecast
- 🛿 Gales are overforecast and tornados are underforecast
- 😫 Gales and tornados are overforecast

Scores ... Answer_1

Categorical Forecasts

Frequency Bias, B ~ FBI

Reference: EUMETCAL Verification module

Below are two contingency tables representing two completely different sets of forecasts. The left hand table is for 151 Gale forecasts, and the right hand table is for 2800 forecasts of the occurrence of tornados in the US. Test your understanding of frequency bias using the question below the tables:

	\bigcirc
1	1/7

Gale forecast	Gale observed		
	Yes	No	fc Σ
Yes	15	2	17
No	11	123	134
obs S	26	125	151

Tornado	Tornado observed				
forecast	Yes	No	fc Σ		
Yes	30	70	100		
No	20	2680	2700		
obs S	50	2750	2800		

Which of the following statements correctly describes the bias of the two sets of forecasts?

- 🕺 Gales and tornados are underforecast
- 🌠 Gales are underforecast and tornados are overforecast
- 🐰 Gales are overforecast and tornados are underforecast
- 🕅 Gales and tornados are overforecast

Yes, correct: For gales, B=17/26 which is less than 1 while for tornados, B= 100/50 which is greater than 1.	

Scores ... Exercise_2

Hit rate aka Probability Of Detection, H ~ POD / Proportion Correct, PC

Gale	Ga	Gale observed			Gale observed			Torna	
forecast	Yes	No	fc Σ		foreca				
Yes	15	2	17		Yes				
No	11	123	134		No				
obsΣ	26	125	151		obs				

Tornado	Tornado observed				
forecast	Yes	No	fc Σ		
Yes	30	70	100		
No	20	2680	2700		
obsΣ	50	2750	2800		

Question: Determine the PC and the hit rate for the two contingency tables shown above by dragging the correct answer to the appropriate boxes in the table.

			0.30
			0.40
Gale Forecasts	Tornado Forecasts		0.42
			0.58
			0.60
			0.88
			0.00
			0.91
			0.97
	Gale Forecasts	Gale Forecasts Tornado Forecasts Image: Constraint of the second seco	Gale Forecasts Tornado Forecasts Image: I

Reference: EUMETCAL Verification module

0 20

Scores ... Answer_2

Hit rate aka Probability Of Detection, H ~ POD / Proportion Correct, PC

Gale	Gale observed			
forecast	Yes	No	fc Σ	
Yes	15	2	17	
No	11	123	134	
obs S	26	125	151	

Tornado	Tornado observed				
forecast	Yes	No	fc Σ		
Yes	30	70	100		
No	20	20 2680			
obsΣ	50	2750	2800		

Question: Determine the PC and the hit rate for the two contingency tables shown above by dragging the correct answer to the appropriate boxes in the table.

correct				0.30
			,	0.40
	Gale Forecasts	Tornado Forecasts		0.42
Hit Rate =	0.58	0.60		
Proportion Correct =	0.91	0.97		0.88

Scores ... Exercise_3

Categorical Forecasts

False Alarm Ratio, FAR / False Alarm Rate, F

Gale	Ga	le observed		Tornado
forecast	Yes	No	fc Σ	forecast
Yes	15	2	17	Yes
No	11	123	134	No
obsΣ	26	125	151	obsΣ

Tornado	Tornado observed				
forecast	Yes	No	fc Σ		
Yes	30	70	100		
No	20	2680	2700		
obsΣ	50	2750	2800		

Question: Determine the false alarm ratio and false alarm rate for the two contingency tables shown above by dragging the correct answer to the appropriate boxes in the table.

			0.02	
	Gale Forecasts	Tornado Forecasts	0.03	
F 1 1			0.12	
False alarm ratio =			0.30	
False alarm rate =			0.70	
			0.88	

Scores ... Answer_3

Categorical Forecasts

False Alarm Ratio, FAR / False Alarm Rate, F

Gale	Gale observed			
forecast	Yes	No	fc Σ	
Yes	15	2	17	
No	11	123	134	
obs S	26	125	151	

Tornado	Tornado observed			
forecast	Yes	No	fc Σ	
Yes	30	70	100	
No	20	2680	2700	
obs S	50	2750	2800	

Question: Determine the false alarm ratio and false alarm rate for the two contingency tables shown above by dragging the correct answer to the appropriate boxes in the table.

C	correct				
			Gale Forecasts	Tornado Forecasts	
	False	e alarm ratio =	0.12	0.70	0.30
	False	e alarm rate =	0.02	0.03	
					0.88

<u>Scores</u> ...4

Event	Event observed				
forecast	Yes	No	Marginal total		
Yes	а	b	a + b		
No	С	d	c + d		
Marginal total	a + c	b + d	a + b + c + d =n		

Threat Score, Critical Success Index

TS = CSI = a / (a + b + c)

- <u>Simple popular measure of rare events</u>.
- Takes into account hits, false alarms and misses.

 \Leftrightarrow More balanced than POD or FAR.

- Correct (simple) "no" forecasts not considered.
- Sensitive to climatological frequency of event ⇔ Poorer scores for rare events

Equitable Threat Score, Gilbert Skill Score (GSS)

ETS =
$$(a - a_r) / (a + b + c - a_r)$$

where $a_r = (a + b) (a + c) / n$

Range: -1/3 to 1 Perfect score = 1 No skill level = 0

... is the number of hits due to random forecasts (chance).

 \Leftrightarrow Simple TS may include hits due to random chance.

Categorical Forecasts

Scores ... Exercise_4a

Threat Score aka Critical Success Index, TS ~ CSI / Equitable Threat Score, ETS

Gale	Ga	Gale observed		Tornado	Tornado observed		
forecast	Yes	No	fc Σ	forecast	Yes	No	fc Σ
Yes	15	2	17	Yes	30	70	100
No	11	123	134	No	20	2680	2700
obs S	26	125	151	obsΣ	50	2750	2800

Determine the CSI, the number of hits by chance (a_r) and the ETS for the two contingency tables shown above by dragging the correct answer to the appropriate boxes in the table.

			0.24
	Gale Forecasts	Tornado Forecasts	0.25
n Nacional de la companya de la company			0.43
Threat Score			0.48
Hits by chance =			0.54
Equitable Threat Score =			0.60
-			1.79
			2.93

Reference: EUMETCAL Verification module

NB: Perhaps skip the calculations and go directly to Exercise 4b

pertti.nurmi@fmi.fi

3rd International Verification Methods Workshop

Scores ... Answer_4a

Threat Score aka Critical Success Index, TS ~ CSI / Equitable Threat Score, ETS

Gale	Ga	Gale observed		Tornado		Torn	ado observ	ed
forecast	Yes	No	fc Σ		forecast	Yes	No	fc Σ
Yes	15	2	17		Yes	30	70	100
No	11	123	134		No	20	2680	2700
obsΣ	26	125	151		obsΣ	50	2750	2800

Determine the CSI, the number of hits by chance (a_r) and the ETS for the two contingency tables shown above by dragging the correct answer to the appropriate boxes in the table.

correct	Gale Forecasts	Tornado Forecasts	0.42
Threat Score	0.54	0.25	0.43
Hits by chance =	2.93	1.79	
Equitable Threat Score =	0.48	0.24	0.60

Threat Score aka Critical Success Index, TS ~ CSI / Equitable Threat Score, ETS

	Gale Forecasts	Tornado Forecasts
Threat Score	0.54	0.25
Hits by chance =	2.93	1.79
Equitable Threat Score =	0.48	0.24

Using the results obtained above, select the correct answer to the following question

How did the value of the ETS change with respect to the TS?

- 🛿 For both gales and tornados, the ETS is smaller than the TS
- 김 The ETS for gales is higher, lower for tornados
- R The ETS for gales is lower, but higher for tornados
- 김 The ETS is higher for both gales and tornados

Scores ... Answer_4b

Threat Score aka Critical Success Index, TS ~ CSI / Equitable Threat Score, ETS

	Gale Forecasts	Tornado Forecasts
Threat Score	0.54	0.25
Hits by chance =	2.93	1.79
Equitable Threat Score =	0.48	0.24

Using the results obtained above, select the correct answer to the following question

How did the value of the ETS change with respect to the TS?

🚺 For both gales and tornados, the ETS is smaller than the TS -

- 🔀 The ETS for gales is higher, lower for tornados
- 🔀 The ETS for gales is lower, but higher for tornados
- 🚺 The ETS is higher for both gales and tornados

Feedback

Correct. Actually, the ETS must always decrease because the number correct by chance is subtracted from both numerator and denominator

Reference: EUMETCAL Verification module

×

Threat Score aka Critical Success Index, TS ~ CSI / Equitable Threat Score, ETS

	Gale Forecasts	Tornado Forecasts
Threat Score	0.54	0.25
Hits by chance =	2.93	1.79
Equitable Threat Score =	0.48	0.24

Looking at the table, are the following statements true or false?

	True	False
The number correct by chance is greater for gales than for tornados	2	2
The decrease in the ETS, when compared to the CSI, is greater for the gales than for the tornados		R

Reference: EUMETCAL Verification module

Scores ... Answer_4c

Threat Score aka Critical Success Index, TS ~ CSI / Equitable Threat Score, ETS

	Gale Forecasts	Tornado Forecasts
Threat Score	0.54	0.25
Hits by chance =	2.93	1.79
Equitable Threat Score =	0.48	0.24

Looking at the table, are the following statements true or false?

True False

X The number correct by chance is greater for gales than for tornados

The decrease in the ETS, when compared to the CSI, is greater for

the gales than for the tornados

X Feedback Х Yes, 2.93 vs. 1.79. Tornados are a rare event, so the chance of guessing the occurrence of a tornado correctly is lower. Х Feedback Correct. The ETS is about .06 lower for the gales and only .01 lower for the tornadoes. Since the TS is typically lower for rare events than for more common events for a particular hit rate (note the hit rates are nearly equal), the adjustment for chance forecasts helps offset this systematic tendency.

Scores ...5

Event	Event observed						
forecast	Yes	No	Marginal total				
Yes	а	b	a + b				
No	С	d	c + d				
Marginal total	a + c	b + d	a + b + c + d =n				

Categorical Forecasts

"Finley"

Hanssen & Kuiper's Skill Score, True Skill Statistics

$$\mathbf{KSS} = \mathbf{TSS} = \mathbf{H} - \mathbf{F}$$

= (ad - bc) / [(a+c)(b+d)]

- Range: -1 to 1 Perfect score = 1 No skill level = 0
- Popular combination skill score of H and F.
- Measures ability to separate "yes" cases (H) from "no" cases (F).
- For rare events, d cell is high => F small => KSS close to POD.
- Related to the Relative Operating Characteristic (ROC) \Leftrightarrow Probability forecasts

Heidke <u>Skill</u> Score

$$HSS = \{PC - ref\} / \{1 - ref\}$$

- = { (a + d) / n [(a+b)*(a+c) + (b+d)*(c+d)] / n² } /
 - 1 $[(a+b)*(a+c)+(b+d)*(c+d)]/n^2$

B = 2.00PC = 0.97 POD = 0.60 FAR = 0.70 PAG = 0.30 F = 0.03 TS = 0.25 ETS = 0.24 KSS = 0.57 HSS = 0.39

Range: - oo to 1 Perfect score = 1 No skill level = 0

Scores ...5

Event	Event observed						
forecast	Yes	No	Marginal total				
Yes	а	b	a + b				
No	С	d	c + d				
Marginal total	a + c	b + d	a + b + c + d =n				

Categorical Forecasts

"Finley"

Hanssen & Kuiper's <u>Skill</u> Score, True <u>Skill</u> Statistics

KSS = TSS = H - F

= (ad - bc) / [(a+c)(b+d)]

Range: -1 to 1 Perfect score = 1 No skill level = 0

- **<u>Popular combination skill score of H and F.</u>**
- Measures ability to separate "yes" cases (H) from "no" cases (F).
- For rare events, d cell is high => F small => KSS close to POD.
- − Related to the Relative Operating Characteristic (ROC) ⇔ Probability forecasts

Heidke Skill Score (in a simplified, calculation-friendly form)

HSS = 2(ad - bc) / [(a + c)(c + d) + (a + b)(b + d)]

- <u>One of the most popular skill measures for categorical forecasts</u>.
- Measures fractional improvement over random chance.
- Can be compared on different datasets

pertti.nurmi@fmi.fi

Range: - oo to 1 Perfect score = 1 No skill level = 0

B = 2.00PC = 0.97 POD = 0.60 FAR = 0.70 PAG = 0.30 F = 0.03 TS = 0.25 ETS = 0.24 KSS = 0.57 HSS = 0.39

Scores ... Exercise_5

Categorical Forecasts

Hansen & Kuiper's Skill Score aka True Skill Satistics, KSS ~ TSS

Gale	Ga	le observed		Tornado		Tornado observed		
forecast	Yes	No	fc Σ		forecast	Yes	No	
Yes	15	2	17		Yes	30	70	
No	11	123	134		No	20	2680	
obsΣ	26	125	151		obsΣ	50	2750	

Question: Determine the KSS values for the tornado and gale forecasts and fill them in by dragging the correct value to its place in the table below.

fc Σ

100

2700

2800

			0.0)3
	Gale Forecasts	Tornado Forecasts	0.4	1
Hanssen-Kuiper Skill Score =			0.5	52
I			0.5	56
			0.5	57

Reference: EUMETCAL Verification module

0.02

Scores ... Answer_5

Categorical Forecasts

Hansen & Kuiper's Skill Score aka True Skill Satistics, KSS ~ TSS

Gale	Gale observed						
forecast	Yes	No	fc Σ				
Yes	15	2	17				
No	11	123	134				
obsΣ	26	125	151				

Tornado	Tornado observed						
forecast	Yes	No	fc Σ				
Yes	30	70	100				
No	20	2680	2700				
obs S	50	2750	2800				

Question: Determine the KSS values for the tornado and gale forecasts and fill them in by dragging the correct value to its place in the table below.

correct			0.	02
COLECT			0.	03
	Gale Forecasts	Tornado Forecasts	0.	41
Hanssen-Kuiper Skill Score =	0.56	0.57	0.	52

<u>Scores</u> ...6

Event	Event observed						
forecast	Yes	No	Marginal total				
Yes	а	b	a + b				
No	No C		No c d		c + d		
Marginal total	a + c	b + d	a + b + c + d =n				

Odds ratio

OR = a d / b c

Range: 0 to oo Perfect score = oo No skill level = 1

Measures forecasts' probability (odds)

to score a hit (H) as compared to making a false alarm (F):

OR = [H/(1-H)] / [F/(1-F)]

- Independent of potential biases between observations and forecasts.

Transformation into a skill score, ranging from -1 to +1:

ORSS = (ad - bc) / (ad + bc)= (OR - 1) / (OR + 1)

- Produces typically very high absolute skill values, due to definition.
- <u>Very little used in meteorological forecast verification</u>.

Categorical Forecasts

"Finley"

Tornado observed Tornado forecast Yes No fc **Σ** Yes 30 70 100 20 2680 2700 No 50 obs **D** 2750 2800

B = 2.00

PC = 0.97 POD = 0.60 FAR = 0.70 PAG = 0.30 F = 0.03 TS = 0.25 ETS = 0.24 KSS = 0.57 HSS = 0.39 OR = 57.43

ORSS = 0.97

Scores ... Exercise_6

Categorical Forecasts

"Summary"

Reference: EUMETCAL Verification module

	Rain	Rai	n observed		Scores			
	forecast	Yes	No	fc Σ		B = 1.31	TS	= 0.44
	Yes	52	45	97		PC = 0.81	ETS	= 0.32
	No	22	227	249	~_	FOD = 0.70 FAR = 0.46	HSS	= 0.33
2	obs S	74	272	346		PAG = 0.54 F = 0.17		

Which of the following statements about the verification scores are true.

	True	False
Rain is a frequent event at this station	2	2
Rain was overforecast at this station	2	2
The high frequency of forecasting of rain has led to a high false alarm rate	2	2
The PC is high (0.81) because forecasting for this dry location is easy		2
The POD is high (0.7) because forecasting for this dry location is easy		2
The forecasts were skilful on average	2	2

Scores ... Answer_6

Categorical Forecasts

"Summary"

Rain	Raiı	observed			Score	es			
forecast	Yes	No	fc Σ		B = 1.31	TS	= 0	.44	
Yes	52	45	97	~~	PC = 0.81	ETS	= 0	.32	
No	22	227	249	~~	FAR = 0.46	HSS	= 0	.48	
obs S	74	272	346		PAG = 0.54 F = 0.17				
Which of the following statements about the verification scores are to True Rain is a frequent event at this station Rain was overforecast at this station The high frequency of forecasting of rain has led to a high false alarm rate The PC is high (0.81) because forecasting for this dry location is easy The POD is high (0.7) because forecasting for this dry location is						s are tr True X X X X X	ue. False X X X	Correct. I at this stat True. The overfored Correct by high observ dry.	Rain occurs with a frequency of only about 20% (74/346) ion, relatively dry for Finland! e frequency bias is 1.31, greater than 1, meaning casting. et. It could be seen that the overforecasting is accompanied in false alarm RATIO, but the false alarm rate depends on the ation frequencies, and is low because the climate is relatively
	easy The forec:	asts were sl	kilful on ave	rage			X	Pro fore non	bably true. The PC gives credit for all those "easy" correct casts of the non-occurrence. Such forecasts are easy when the -occurrence is common.
portti si	urmi@fm:f	Yes. Bo Remem easy to	oth the KSS ber, the stan beat.	and the H dard for t	ISS are well within the posit the HSS is a chance forecas	ive rang t, which	ge. Lis f	The POD is hi orecast the or nore false alar	gh most likely because the forecaster has chosen to courrence of the even too often, and has incurred rms too.

Scores ... Exercise_7

"Summary"

Attached is a contingency table of five months of categorical warnings against gale-force winds, i.e. wind speeds exceeding 14 m/s (left). Compute the specified verification statistics. For reference, corresponding "Finlay" tornado verification statistics are shown (right). Interpret the scores and compare the two.

Gale	Gale observed				
forecast	Yes	Yes No			
Yes	15	2	17		
No	11	123	134		
obs Σ	26	125	151		

$$B = (a+b)/(a+c) = _____PC = (a+d)/n = _____POD = a/(a+c) = _____FAR = b/(a+b) = _____PAG = a/(a+b) = _____F = b/(b+d) = _____F = b/(b+d) = _____KSS = POD-F = _____TS = a/(a+b+c) = _____TS = a/(a+b+c) = _____HSS = 2(ad-bc)/[(a+c)(c+d)+(a+b)(b+d)] = _____OR = ad/bc = _____ORSS = (OR-1)/(OR+1) = _____$$

Tornado	Tornado observed			
forecast	Yes	Νο	fc Σ	
Yes	30	70	100	
No	No 20		2700	
obs Σ 50		2750	2800	
2. $00 = H$	3			
0.97 = P	С			
0.60 = P	OD			
0.70 = F	AR			
0.30 = P	AG			
0.03 = F				
0.57 = K	SS			
0.25 = T	'S			
0.24 = E	TS			
0.39 = H	ISS			
57.43 =	OR			
0.97 = C	RSS			

Scores ... Answer_7

"Summary"

Attached is a contingency table of five months of categorical warnings against gale-force winds, i.e. wind speeds exceeding 14 m/s (left). Compute the specified verification statistics. For reference, corresponding "Finlay" tornado verification statistics are shown (right). Interpret the scores and compare the two.

Gale forecast	Gale observed			
	Yes	Νο	fc Σ	
Yes	15	2	17	
No	11	123	134	
obs Σ	26	125	151	

$$B = (a+b)/(a+c) = 0.65$$

PC = (a+d)/n = 0.91
POD = a/(a+c) = 0.58
FAR = b/(a+b) = 0.12
PAG = a/(a+b) = 0.88
F = b/(b+d) = 0.02
KSS = POD-F = 0.56
TS = a/(a+b+c) = 0.54
ETS = (a-a_r)/(a+b+c-a_r) = 0.48
HSS = 2(ad-bc)/[(a+c)(c+d)+(a+b)(b+d)] = 0.65
OR = ad/bc = 83.86
ORSS = (OR-1)/(OR+1) = 0.98

Tornado	Tornado observed			
forecast	Yes	Νο	fc Σ	
Yes	30	70	100	
No	20	2680	2700	
obs Σ	obs Σ 50		2800	
$\begin{array}{c} 2.\ 00 = \mathrm{H} \\ 0.97 = \mathrm{P} \\ 0.60 = \mathrm{P} \\ 0.70 = \mathrm{F} \\ 0.30 = \mathrm{P} \\ 0.03 = \mathrm{F} \\ 0.57 = \mathrm{K} \\ 0.25 = \mathrm{T} \\ 0.24 = \mathrm{E} \end{array}$	B C OD AR AG SS S TS			
0.39 = H 57.43 = 0.97 = 0.000	ISS OR DRSS			

Multi-category Events

- Extension of 2*2 to several (k) mutually exhaustive categories
 - ✓ Rain type: rain / snow / freezing rain (k=3)
 - ✓ Wind warnings: strong gale / gale / no gale (k=3)
- Only PC (Proportion Correct) can be directly generalized
- Other verification measures need be converted into a series of 2*2 tables
 - ✓ "Forecast event" distinct from the "non-forecast event"

Generalization of KSS and HSS – measures of improvement over random forecasts:

 $KSS = \{ \Sigma p(f_i, o_i) - \Sigma p(f_i) p(o_i) \} / \{ 1 - \Sigma (p(f_i))^2 \}$ HSS = $\{ \Sigma p(f_i, o_i) - \Sigma p(f_i) p(o_i) \} / \{ 1 - \Sigma p(f_i) p(o_i) \}$

Categorical Forecasts

Exercise 8: Multi-category event

	Clouds	Clouds observed			Cloudiness in Finland					
1	forecast	0 - 2	3 - 5	6 - 8	fc Σ					
							No clouds (0-2)	Partly cloudy (3-5)	Cloudy (6-8)	
	0 - 2	65	10	21	96		B = 0.86	B = 2.54	B = 0.79	
		00	4 7	48 94			POD = 0.58	POD = 0.46	POD = 0.65	
	3 - 5	29	17		40	94	48 94	~>	FAR = 0.32	FAR = 0.82
	<mark>6 - 8</mark>	18	10	128	156		F = 0.13	F = 0.25	F = 0.19	
						156	100		TS = 0.45	TS = 0.15
	obs Σ	112	37	197	346		Overall: PC =	0.61 KSS = 0.43	1 HSS = 0.37	

Multi-category contingency table of one year (with 19 missing cases) of cloudiness forecasts (left), and resulting statistics (right), exclusively for forecasts of each cloud category, together with the overall PC, KSS and HSS. Please examine/ comment:

pertti.nurmi@fmi.fi

Categorical Forecasts

Answer_8: Multi-category event

Clouds	Clouds observed				Cloudiness in Finland		
forecast	0 - 2	3 - 5	6 - 8	fc Σ			
0.2	6E	10	24	06	No clouds (0-2) Partly cloudy (3-5) Cloudy (6-8)		
U - Z	CO	IU	21	90	B = 0.86 $B = 2.54$ $B = 0.79$		
3 - 5	29	17	48	94	POD = 0.58 POD = 0.46 POD = 0.65 FAR = 0.32 FAR = 0.82 FAR = 0.18		
<mark>6 - 8</mark>	18	10	128	156	F = 0.13 $F = 0.25$ $F = 0.19$ $TS = 0.45$ $TS = 0.15$ $TS = 0.57$		
obs Σ	112	37	197	346	Overall: PC = 0.61 KSS = 0.41 HSS = 0.37		

Multi-category contingency table of one year (with 19 missing cases) of cloudiness forecasts (left), and resulting statistics (right), exclusively for forecasts of each cloud category, together with the overall PC, KSS and HSS.

Overall skill ? - Both skill scores relatively high, c. 0.4

- Most (90% of the) cases in "no cloud" or "cloudy" category
- Neither score considers relative sample probabilities

Partly cloudy category ?	 Very strong overforecasting, B = 2.5 Numerous false alarms, FAR = 0.8 Despite of above, poor detection of event, POD c. 0.5

Exercise_8b: Multi-category event, cont'd...

Categorical Forecasts

Previous data transformed into hit/miss bar charts, either given the observations (left), or given the forecasts (right). The green, yellow and red bars denote correct and one and two category errors, respectively.

<u>U-shape in observations evident (left)</u>

✓ No hint of U-shape in forecast distribution (right).

Exercise_9: Multi-category event #2

3rd International Verification Methods Workshop

Summary

- Verify a <u>comprehensive</u> set of categorical events
 - Compile relevant contingency tables
 - ✓ Cover, if possible, multi-category events
 - ✓ Focus on <u>adverse and/or extreme local weather</u>
- Stratify & Aggregate"

+ Compute FBI, PC, POD & FAR, F, PAG, TS, ETS, KSS, HSS

✤ Additionally, compute OR, ORSS, ROC

Examples

- \checkmark Rain (vs. no rain); with various rainfall thresholds
- ✓ **Snowfall**; with various thresholds
- \checkmark Strong winds (vs. no strong wind); with various wind force thresholds
- ✓ **Night frost** (vs. no frost)
- ✓ Fog (vs. no fog)

- ✓ Jolliffe and Stephenson, Eds. (2003): Forecast Verification: A Practitioner's Guide, Wiley & Sons.
- ✓ Nurmi (2003): Recommendations on the verification of local weather forecasts. ECMWF Tech. Mem. 430.
- Wilks (2005): Statistical Methods in the Atmospheric Sciences, Chapter 7 (Forecast Verification). Academic Press.
- www.eumetcal.org.uk/eumetcal/verification/www/english/courses /msgcrs/index.htm
- ⇒ <u>www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html</u>

Thank You

Pertti Nurmi

Meteorological Research & Development Finnish Meteorological Institute

