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Questions we are trying to answer

• What is the impact of PCA on hyperspectral IR data?
• data compression;
• estimation of the Information Loss;
• noise reduction.

• What information is embedded in the Principal Components?
• noise estimation and characterization;
• Instrument monitoring.

• What are the current and future applications of PCA to hyperspectral data?
• IASI data analysis;
• Data inversion;
• Forward Models.



Data Compression Problem

• Generally there are two dimensions along which a compression scheme may be
measured: algorithm complexity and amount of compression;

• When data compression is used in a data transmission application, the goal is speed.
Speed of transmission depends upon the number of bits sent, the time required for the
encoder to generate the coded message, and the time required for the decoder to recover
the original ensemble;

• When dealing with hyperspectral data compression there is a third dimension that
becomes relevant: impact of compression on observation noise;

• This means that when data is compressed, the goal is to reduce redundancy, leaving only
the informational content.



Data compression/Noise filter Problem

Lobs(ν)=Latm(ν)+η(ν)

Find F=BQ such that: Lest(ν)=F(Lobs(ν))

With minimal Estimation Errors:  EE(ν)=Lest(ν)-Latm(ν)

Lest(ν)=P(Lobs(ν)) where P=BQPCA

MMSE
For noise filter only purposes if S=cov(η) and R=cov(Latm) 

are known,the optimal linear filter in the least square sense is
F=R(R+S)-1

Ω=B(Lobs(ν)) and Lest(ν)=Q(Ω) 



Application of PCA to hyperspectral data

• Normalize each spectrum Lobs by estimated Noise Equivalent Radiance;

• Derive the Principal Components from observations  (Eigenfunctions of Covariance Matrix
of dependent Lobs);

• Project each Lobs onto PCs;

• Compress the data retaining only Nt PCs;

• Estimate noise normalized signal (Lest) by expanding the compressed data;

• Remove normalization.



Terms, Equations

Variable Description
n number of channels
m number of spectra
L = Norig/NENinit noise normalized spectra
C = LT L = U D UT covariance matrix of S
D eigenvalues
U eigenvectors
Ú truncated eigenvector matrix
nT number of eigenvectors in Ú
Lest = L Ú ÚT NENinit reconstructed spectra
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Compression and Noise Reduction

After Noise Normalization data: σi=1  i

Original space:  Φ2= Σ σj
2=N         j=1,….,N

Reduced space:  Γ2= Σ σj
2=Nt              j=1,….,Nt

Noise Reduction Factor (NRF)

γ=sqrt(Φ2/ Γ2)=sqrt(N/Nt)



Useful Quantities

Estimation Error (EE): difference between noise free and filtered signals;

Atmospheric Information Loss (AIL): difference between noise free signal before and after
filtering;

Reconstructed Noise (RN): noise signal after filtering;

Reconstruction Residuals (RR): difference between observed signal before and after
filtering;



EE vs RN

On simulated data



Correlation in RN

On simulated data



Correlation in AIL

On simulated data



PNF approaches theoretical limits defined Linear Estimation Theory

PCA 
Rms(RN)

MMSE
Rms(RN)

PCA 
Rms(AIL)

MMSE 
Rms(AIL)

<Rms(AIL)>

<Rms(RN)>

On simulated data



Real data:
S-HIS from SAFARI 2000

Mean

Variance



The Noise Filter Effect of PCA



Filtered-Unfiltered for almost
overlapping FOVs over Ocean

Unfiltered

Filtered

Courtesy of MAS team



RR single FOV over Ocean



RR for almost overlapping FOVs over Fire

Courtesy of MAS team



RR for almost overlapping FOVs over Fire



Unfiltered data for 10
FOVs over Fire

Filtered data for 10 
FOVs over Fire

PCA applied to strong Blue Spike



Unfiltered data for 10
FOVs after Fire

Filtered data for 10
FOVs after Fire

PCA applied to weak Blue Spike



General conclusions on PCA

• PCA by taking advantage of redundancy reduces random component of
Instrument noise (PNF) and perform significant data compression;

• Both AIL and RN approach the optimal value defined by Linear Estimation
Theory;

• For simulated data (presented case) AIL and RN are 7 times smaller that original
noise, and compression ratio of about 50 is achieved;

• Both AIL and RN are correlated in wavenumber space;

• Most difficult cases, observation highly deviant from mean, are properly treated
if PCs are derived in Dependent Mode



PCA applied to Noise Estimation

• Dave Tobin, Hank Revercomb, Paolo Antonelli, Ken Vinson

• CIMSS/SSEC/UW-Madison



Outline

• Introduction

- Approach: Dependent set PCA of AIRS Earth scene data

- Results with simulated data

• NeDT investigations

- Comparisons to blackbody estimates

- Signal dependence

- Spectrally correlated

• Non-gaussian behavior

- Nσ events, “popping”, “striping”

• Inspection of PCs and individual spectra, etc.

- Array correlated noise

- A/B state artifacts

• Summary, Conclusions



Approach: Dependent Set PCA of AIRS L1B Earth Scene Data

1. Using an AIRS L1B granule (6 minutes of data, 90*135 FOVs)

1) 1) Exclude bad channels using the AIRS team prescription

1.  - Typically retains ~2120 of 2378 channels

2) 2) Noise normalize the radiance spectra using an initial noise estimate (divide by
NeDN)

1.  - This initial estimate can also come from non-noise-normalized PCA

3) 3) Generate principle components (PCs) of the covariance matrix of the noise 
normalized spectra

4) 4) Reconstruct the spectra using a reduced number of PCs
1. - Using the method described in Turner et al. to determine this number

5) 5) Remove the noise normalization (multiply the reconstructed spectra by the initial
noise estimate) and perform analyses of the reconstruction error to characterize and
derive noise estimates.

1.  - e.g. NEDN = STDDEV(RR) is an estimate of the spectrally uncorrelated random noise



Reconstruction Error versus #PCs
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Example results for simulated data (purely Gaussian random noise)

15-Dec-2000 granule 081 longwave

midwave

shortwave

Simulated noise
PCA estimate

wavenumber

Distribution of differences
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L2.chan_prop.2003.11.19.v8.1.0.anc

Focal plane array map

• Total noise estimates (NEN, NEDT@250K) derived from on-board blackbody and space views

• provided in 1) Channel properties files and 2) L1B granule files

• Signal dependence   AIRS L1B ATBD, l1bqa_changes.pdf @ GDAAC

• Array correlated noise   Pagano, Weiler, AIRS Design Files #614, #620

• Striping   e.g. Gaiser, Dec 2004 AIRS STM

• “Popping”   M. Weiler, Nov 2002 AIRS TM; M. Weiler, SPIE Proc. 5882, 2005.

AIRS Noise



NEDT investigations

• STDDEV(RR)



Analysis of 01 April 2005 data (v4.0.9 L1B)

7 ascending (daytime) granules

sample spectra

wavenumber

1000 cm-1 brightness temperatures



Channel Selection

Follows the guidelines provided by the AIRS project:

1. AB_State (in channel properties file) <= 2.  (If AB_State > 2, the channel has
known radiometric problems.)

2. NEDT@250K (computed from NeN in L1B granule file) <= 2K
3. Bits 6 (Anomaly in offset calculation), 5 (Anomaly in gain calculation), 4 (Pop

detected), 3 (High Noise) of CalChanSummary (in L1B granule file) are not set.



Variance Metrics, following Turner et al.

Gran.  IND  IE
194     50    14
195     53    16
196     49    14
197     52    15
198     69    24
199     61    20
200     51    15

# of PCs
used in the

reconstructions

  Eigenvalues  

    Factor Indicator Function  

  Imbedded Error Function  

  Real Error Function  

  100 - Percent Cumulative Variance    

Eigenvalue number

Granules
194
195
196
197
198
199
200



PC#

PC value
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Variance Metrics: “brute force” determinations

The high order (least significant) PCs
should represent random white noise.
Various normality tests performed on the
PCs suggest that the number PCs used
in the reconstructions (determined with
the IND method) are reasonable.

Example for granule 195 PCs:

Eigenvector Distributions

Gaussian distribution test statistic (largest deviation from Gaussian CDF)

PC#



NeDT comparisons, granule 194
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Channel properties file
Granule estimate

PCA estimate = STDDEV(RR)



NeDT comparisons, granule 195
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NeDT comparisons, granule 196
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NeDT comparisons, granule 197
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NeDT comparisons, granule 198
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NeDT comparisons, granule 199
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NeDT comparisons, granule 200
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NeDT comparison summary, longwave
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Granule estimate minus Chan Prop File
PCA estimate minus Chan Prop File

Granule estimate minus Chan Prop File
PCA estimate minus Chan Prop File

Difference (K)

Channel properties file
Granule estimate, mean

PCA estimate, mean

• Good agreement for the longwave PC arrays M-11 and M-12
• PCA estimates are slightly, but consistently, lower for the other arrays



NeDT comparison summary, midwave
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Channel properties file
Granule estimate, mean

PCA estimate, mean

Granule estimate minus Chan Prop File
PCA estimate minus Chan Prop File

Granule estimate minus Chan Prop File
PCA estimate minus Chan Prop File

Difference (K)

• Good agreement for array M-03.  PCA estimates are slightly, but consistently, lower for the other arrays
• The granule-based estimate is also slightly lower than the channel properties estimate for arrays M-04c
and M-04d



Scene dependence of NEN, longwave

Bins:
245-255 K
255-265 K
265-275 K
275-285 K
285-295 K
295-305 K
305-315 K
315-325 K

Mean radiance spectrum for each bin converted to BT

converted to NEDT@250KNEDN for each bin
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wavenumber

wavenumber

wavenumber

wavenumber

The data from all 7
granules is binned
according to the
SW window region
signal levels.  PCA
is then performed
for each bin and
NEDN is reported
as a function of
signal level.



Scene dependence of NEN, midwave

Bins:
245-255 K
255-265 K
265-275 K
275-285 K
285-295 K
295-305 K
305-315 K
315-325 K
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Scene dependence of NEN, shortwave

Bins:
245-255 K
255-265 K
265-275 K
275-285 K
285-295 K
295-305 K
305-315 K
315-325 K
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NEDN versus scene radiance
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NEDN increases with sqrt{scene radiance},
consistent with photon noise.  The total noise at
scene temperature T is parameterized as

     NEDN(T) = [N(T) γphoton + NEDNthermal
2]1/2

where NEDNthermal
2 (the y-intercepts) and γphoton

(the slopes) are determined for each channel.



NEDN versus scene radiance
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NEDN versus scene radiance parameterization

NEDNthermal
γphoton
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wavenumber

Increase in NEDN from 250K to 300K scene temperatures
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NeDT comparison summary, all bands

Channel properties file
Granule estimate, mean

PCA estimate = [N(250) γphoton + NEDNthermal
2]1/2

Granule estimate minus Chan Prop File
PCA estimate minus Chan Prop File
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Spectrally Correlated Noise

The PCA estimate is of the spectrally uncorrelated noise; the spectrally correlated noise is computed
as [total_noise2 - pca_noise2]1/2 and compared to pre-flight determinations performed by JPL/BAE:
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        PCA estimate
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• Very good agreement between two very different and independent analyses.
• The correlated noise is a large fraction of the total noise for several arrays.



Two caveats re: this presentation

• Correction factor to PCA NEDN estimates to account for the random noise included in
the nT retained PCs

- Not included in plots shown here
- But the effect is small. [n/(n-nT)]1/2, e.g. (2120/2060)1/2 = 1.015

• Reconstruction with a reduced number of PCs introduces spectral correlation
- This effect is also small, perhaps negligible (see Antonelli 2004, Turner 2006), but I
have not quantified it here.

• NOTE: Reconstructed spectra  are derived using a reduced number of PCs
• According to the method described in Turner et al. to determine this number



Non-Gaussian behavior

• Further investigation of RR



Gaussian channel example

Granule 198, Array M-11, Channel 171 @ 698.545 cm-1

radiance

radiance

Original Radiances Reconstructed Radiances Difference / NEN

[  ]

Difference / NEN
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# 1σ events = 3897
# 2σ events = 566
# 3σ events = 23
# 1σ pops = 17
# 2σ pops = 0
# 3σ pops = 0
# stripes = 0



“Popping” channel example

Granule 198, Array M-09, Channel 530 @ 821.597 cm-1

radiance

radiance

Original Radiances Reconstructed Radiances Difference / NEN

[  ]

Difference / NEN
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sample number

# 1σ events = 3825
# 2σ events = 563
# 3σ events = 26
# 1σ pops = 187
# 2σ pops = 15
# 3σ pops = 0
# stripes = 0



“Popping” channel example

Granule 198, Array M-09, Channel 530 @ 821.597 cm-1

radiance

radiance

Original Radiances Reconstructed Radiances Difference / NEN
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Granule 198, Array M-09, Channel 573 @ 838.106 cm-1

“Popping” channel example
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“Striping” channel example

Granule 198, Array M-09, Channel 564 @ 834.772 cm-1

radiance

radiance

Original Radiances Reconstructed Radiances Difference / NEN

[  ]

Difference / NEN
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# 1σ events = 3713
# 2σ events = 593
# 3σ events = 61
# 1σ pops = 118
# 2σ pops = 12
# 3σ pops = 0
# stripes = 1



1 σ

2 σ

3 σ

Gaussian

Number of events for pure Gaussian behavior:
# 1σ events per granule = 90*135*(1-0.683) = 3852
# 2σ events per granule = 90*135*(1-0.955) = 547
# 3σ events per granule = 90*135*(1-0.997) = 36

Number of Nσ events detected
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1σ pops
2σ pops
3σ pops

# of 1σ pops for 
  pure Gaussian
  behavior

Number of Nσ Pops detected

Number of pops for pure Gaussian behavior:
# 1σ pops per granule = 2*90*135*(0.5*(1-0.683))4 = 15
# 2σ pops per granule = 2*90*135*(0.5*(1-0.955))4 = 0 
# 3σ pops per granule = 2*90*135*(0.5*(1-0.997))4 = 0

- Nσ pop defined here as 4 or more consecutive Nσ events of same sign
- 875 / 482 / 42 channels exhibit 1σ / 2σ / 3σ popping significantly above Gaussian behavior
- 14 channels found to exhibit “striping”
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Number of Nσ Pops detected
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Inspection of PCs and individual spectra

• Effects that lie in the less understood domain between calibration (long average) and
spectrally random, repeatable noise.



S-HIS 12 µm brightness temperatures
and AIRS FOV locations

ADRIEX (EAQUATE) Campaign
S-HIS on Proteus aircraft @ 16km over Adriatic Sea

2004.09.08, 01:10 UTC

AIRS underflight with the Scanning-HIS



AIRS radiance validation, longwave and midwave



AIRS radiance validation, shortwave



• Similar behavior observed for similar scenes throughout the mission
• Less evident in mean spectra at colder (e.g. Antarctica) and warmer
  (e.g. clear ocean) scenes.

A / B State dependent calibration in M-08

Mean of ~23,000 (unfiltered) spectra with
2616 cm-1 Tb between 240 and 260K, from

granules 194-200 on 2005.04.01

      AB_State = 0
      AB_State = 1
      AB_State = 2

wavenumber

Tb
 (K

)



PC#1

PC#60 Last
PC

wavenumber

wavenumber

PC#13

PC#25

PC#53

• Earliest PCs look clean - of realistic
atmospheric, cloud, and surface
variations
• Array module-to-module biases & noise
variations are apparent at lower levels
(higher PCs)
• Last (least significant) PCs are of
random noise

AIRS Principle Components, granule 195



PC#1

PC#60 Last
PC

wavenumber

wavenumber



PC#1

PC#40

 Last
 PC

Spectral signatures in low order PCs
are clean, indicative of real atmospheric
characteristics

Scanning-HIS Principle Components, Longwave



Ringing is indicative of spectral resampling processing artifact- easily fixed by band guard position mod

Scanning-HIS PCs, Midwave and Shortwave



PC#1

PC#60 Last
PC

wavenumber

wavenumber

PC#13

PC#13

PC#53

• Earliest PCs look clean - of realistic
atmospheric, cloud, and surface
variations
• Array module-to-module biases & noise
variations are apparent at lower levels
(higher PCs)
• Last (least significant) PCs are of
random noise

AIRS Principle Components, granule 195



Impact of PC 13 and 25-53 on an example spectrum

Impact of PCs 25 thru 53
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Differences from mean spectrum

Variations in individual spectra.  2004.09.07 EAQUATE case

AIRS
S-HIS brightness temperatures and

AIRS FOV locations
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Variations in individual spectra.  2004.09.07 EAQUATE case

wavenumber

A/B state and array correlated artifacts Smooth and physically reasonable



Variations in individual spectra.  2004.09.07 EAQUATE case
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Variations in individual spectra.  2004.09.07 EAQUATE case
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0.1-0.3 K jump, 300-270 K

Variations in individual spectra.  2004.09.07 EAQUATE case

Differences from mean spectrum       Differences from mean spectrum   
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S-HISAIRS

Low random noise, but significant
array-to-array jumps

Higher random noise, but 4x spectral
resolution and spectrally smooth



More individual AIRS spectra, 2005.04.01 granule 200

 BT differences from mean spectrum
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Summary, Conclusions
Exploiting the redundancy in high spectral resolution observations, PCA is a simple yet very powerful tool not only for
noise filtering and lossy compression, but also for the characterization of sensor noise and other variable artifacts
using Earth scene data.  Many of the findings presented here are consistent with analyses performed using pre-flight
and on-orbit blackbody and space views, providing strong evidence for the validity of the PCA approach and results.

Specific findings:
• PCA estimates of AIRS spectrally random and spectrally correlated NEDN compare well with estimates
computed from the on-board blackbody and space views.

- The signal dependence of AIRS NEDN can be accurately parameterized in terms of the scene radiance
(e.g. γphoton, NEDNThermal).  AIRS shortwave NEDN for a 300K scene is ~2x larger than for a 250K scene.
- The PCA estimate is of the spectrally random noise; estimates of the AIRS spectrally correlated noise using
[total_noise2 - pca_noise2]1/2 agree very well with preflight determinations using blackbody data.  The
spectrally correlated noise is a large fraction of the total noise for several detector arrays.

• Examination of Norig-Nrecon allows other non-Gaussian phenomenon to be characterized.
- Many longwave and midwave PV detectors exhibit “popping” behavior above that expected from pure
Gaussian behavior; shortwave channels do not exhibit this “popping”.
- For v4 L1B data, only a small percentage (14 out of 2378) of channels exhibit “striping”.

• Inspection of the PCs and individual PC filtered radiance spectra reveal effects that lie in the less understood
domain between calibration (long average) and spectrally random, repeatable noise.

- The radiometric performance of AIRS at the level of the NEN contains artifacts not described by spectrally
and temporally random noise, or by long-term calibration uncertainty.
- Large ensemble averages show A / B state dependent artifacts on the order of ±0.4K for M-08.
- For several arrays, the spectrally correlated noise is large, and dependent on A / B state (i.e. A-A and B-B
channel correlation, but not A-B), generally consistent with Weiler ADFM#620.



Preliminary PCA-based investigations of IASI spectra
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Data

• 3 “granule” (22 scan lines, 22*30*4 footprints) NetCDF files from the test orbit

• Data provided to us via NOAA



900 cm-1 brightness temperatures



Longwave PCs
PC#, λ

14, 1.6

13, 1.8

12, 2.8

11, 3.2

10, 4.3

 9, 4.9

 8, 9.4

 7, 20.9

 6, 46.8

 5, 126.8

 4, 194.8

 3, 1422.2

 2, 3021.0

 1, 280476.8



Longwave PC#11

Effect of 1ppm spectral shift on mean spectrum



Midwave PCs
PC#, λ

14, 0.1

13, 0.2

12, 0.5

11, 0.6

10, 0.8

 9, 1.1

 8, 2.4

 7, 4.2

 6, 6.5

 5, 27.5

 4, 108.1

 3, 174.3

 2, 765.1

 1, 15679.0



Shortwave PCs
PC#, λ

14, 0.004

13, 0.005

12, 0.006

11, 0.01

10, 0.01

 9, 0.02

 8, 0.05

 7, 0.05

 6, 0.08

 5, 0.1

 4, 1.1

 3, 1.6

 2, 10.6

 1, 277.8



Sample SW spectra
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Summary, Preliminary Conclusions

The IASI spectra look very good !

Dependent set PC noise filtering is a powerful tool for greatly reducing random noise and should be
exploited in retrieval and other data applications.

PCA is also a powerful tool for identifying and characterizing sensor characteristics.  The primary
feature investigated here is the expected effects of ILS variations due to scene inhomogeneity.

Varying self-apodization effects due to scene inhomogeneity within the IASI footprints manifests
primarily in a spectral shift, and this effect is found to be largely characterized by a single
PC/eigenvector in the dependent set PCA shown here.

Preliminary studies suggest that the spectra can be reconstructed without the “spectral shift” PC
included to remove a large portion of the effects of ILS variations due to scene inhomogeneity.  More
work needs to be done to study the accuracy and computational efficiency of this approach.

For the Shortwave band, higher order PCs also show line broadening and asymmetry effects due to
the varying self apodization.

Instrument specific characteristics, such as spectral shifting appear to be orthogonal to environmental
variability.



Next

• Further characterization and parameterization of the instrument noise using PCA:
• Further application of PCA to characterize the correlated component of the instrument
noise;
• Further application of PCA to IASI data.

• Study the impact of PCA on the true, natural compressed version of hyperspectral data:
physically retrieved atmospheric variables:

• hyperspectral data inversion system based on LBLRTM and following C. Rodger’s
recepy has been developed in the past 2 years;
• comparison of physical retrievals obtained from filtered and unfiltered radiances;
• impact of PCA on the hyperspectral data information content.



Background

• Noise estimation/characterization using Earth scene data is made possible by PCA
noise filtering

- Huang et al., Application of Principle Component Analysis to High-Resolution Infrared Measurement
Compression and Retrieval, JAM, 40, 365-388, 2001.

- Antonelli et al., A principle component noise filter for high spectral resolution infrared measurements, JGR, 109,
D23102, 2004.

- Goldberg et al., Principle Component Analysis of AIRS Data, Workshop on Assimilation of high spectral
resolution sounders in NWP, ECMWF, June 2004.

- Turner et al., Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using
principal component analysis. Journal of Atmospheric and Oceanic Technology, in press, 2006.

• PCA is also very useful for diagnosing instrument performance and characteristics

- Rodgers, Application of Singular Value Decomposition to High Spectral Resolution Measurements, ASSFTS
2005.

- Tobin et al., Recent efforts to validate EOS observations. Hyperspectral data noise characterization using PCA:
application to AIRS, Proc. SPIE Vol. 6301, 2006.

- The following analyses follow that of Tobin et al. 2006 for dependent set PCA, but without
noise normalization of the radiance spectra at this point.



The End

• Thank you


