

Assimilation of clouds and precipitation General issues and prospects from future sensors

Stephen J. English Met Office

Outline

- Cloudy radiances the basics
 - Existing sensors
- Applications of existing sensors
 - ID-var analysis of cloud from AIRS
 - Assimilation of cloudy AMSU-A microwave radiances
 - The impact of ice cloud on MHS and AMSU-B
 - Assimilation of cloudy geostationary IR radiances (SEVIRI)
- Future sensors
 - Sub-mm sensors
 - Geostationary MW
 - Polametric radiometers (including wind vector potential)

Cloudy radiances - basics

		Polar Orbit 830 km FOV size		Wavelength		
MODIS	Infrared	< 1 km		< 0.1 mm		
CIWSIR	Sub-mm	> 1 km		< 1 mm		
MHS	Microwave	>10 km		< 10 mm		
AMSR	Radiowave	>100 km		1 < 100 mm		
~ 100 mm						

Visible channels (e.g. 0.6 µm) ignored in this presentation though as clouds are non-absorbing in Vis bulk quantities e.g. LWP can be analysed. © Crown copyright 2007

SEVIRI/AMSU-A/MHS composite image

Green to red to yellow **Cloud liquid** water derived from 23/31 GHz

(AAPP)

White lines denote high cloud LWP.

Blue to purple Heavy rain derived from 23/89 GHz or 89/150 GHz

Gray scale = IR image.

Clouds and precipitation: issues

Sounding (**IASI**, **AIRS**, **AMSU**, **MHS**)

Surface (ASCAT, QuikSCAT, WindSat, SSM/I, AVHRR, MODIS)

Sounding (IASI, AIRS, AMSU, MHS)

Surface (ASCAT, QuikSCAT, WindSat, SSM/I, AVHRR, MODIS)

AIRS: cloud impact

QuikScat, WindSat, ERS-2 over Hurricane Katrina

Both Ku-band (14 GHz) and WindSat (10 & 18 GHz) struggle near storm centre.

C-band (6 GHz) OK.

Low level microwave AMSU Ch.5, peak 750 hPa Met Office Data Coverage: SatRad ATOVS Brightness Temperature, ATOVS_AMSU_5 (19/7/2007, 6 UTC, qu06) Total number of observations assimilated: 13895 4734 METOP-A, Min: 224.31, Max: 263.86, Mean: 248.798276299 4607 NOAA-18, Min: 225.95, Max: 262.4, Mean: 249.500633818 4554 NOAA-16, Min: 228.64, Max: 263.03, Mean: 250.728588054 30 * 40*5 150 °W 60 W 30*W 30°E 60 °E 98*E 120*E 150'E 120*W 90 *W 0.

There is a clear motivation to model cloud effects on satellite data not just to reject cloudy radiances

Coping with presence of cloud and rain

- 1D-var analysis of cloud and pass cloud information to assimilation system with radiances (e.g. Pavelin).
- EOF regularisation e.g. NESDIS MIRS system (Boukabarra, Weng, Zhao & Ferraro).

Extracting cloud/rain information

- Analyse cloudy radiances in 1D-var; assimilate 1D-var geophysical product. e.g. Deblonde and Mahfouf 2007, Peter Bauer, today!
- Incrementing cloud operator in 4D-var and direct assimilation of cloudy microwave radiances (e.g. Una O'Keeffe (MW), Dingmin Li (IR) at Met Office).

Assimilation of cloudy AIRS radiances (Ed Pavelin)

Example cloudy weighting functions $(\partial B_i / \partial T_i)$

Example: Simulation for mid-level cloud

"Mid-level" cases: CTP 400-600 hPa

- 28% of 13495 cases
- Analysis improved above cloud
- Significant temperature information below cloud (from semi-transparent cloud + vertical correlations)
- Humidity analysis well-behaved below cloud (follows background)

1DVar Cost Function

[©] Crown copyright 2007

Retrieved effective cloud fraction

Effective Cloud Fraction

[©] Crown copyright 2007

Aside: Validation of cloud retrievals

•CALIPSO: Spaceborne LIDAR (CALIOP)

- Flies in A-Train close behind Aqua
- Accurate cloud top height measurements

Qualitative comparison!

Section of one orbit

Cloudy AIRS radiances trial

Cases: + + VAR-CNTRL-GM × ×VAR-TRIAL-GM

Average impact ~ 2 x cloud-free AIRS.

Some big impacts on forecast "busts" (as does clear AIRS) e.g. here z500 SH day 2 & 3

NOAA/NESDIS Microwave Integrated Retrieval System - MIRS

(Sid Boukabara, Fuzhong Weng, Limin Zhao, Ralph Ferraro)

MIRS: Retrieval in Reduced Space (EOF Decomposition)

•All retrieval is done in EOF space, which allows:

- Retrieval of profiles (T,Q, RR, etc): using a limited number of EOFs
- More stable inversion: smaller matrix but also quasi-diagonal
- Time saving: smaller matrix to invert

Mathematical Basis:

- EOF decomposition (or Eigenvalue Decomposition)
 - By projecting back and forth Cov Matrx, Jacobians and X

MIRS: Assessment in a Precipitating Case

NDAA

MIRS: N-18 Profiling In Active Areas

© Crown copyright 2007

Page 24

DDAI

Assimilation of cloudy radiances in 4D-var using a total water control variable and a cloud incrementing operator

(Una O'Keeffe, Dingmin Li and Martin Sharpe)

Assimilating cloudy microwave radiances in 4Dvar (Martin Sharpe/Una O'Keeffe)

Total moisture analysis variable used in 4D-Var

Need cloud incrementing operator that relates liquid water and specific humidity to the total water control variable

 $C_x^{+} = C_x + KC_w'$

 $\begin{array}{l} \boldsymbol{C_x} = \text{model state } (T,p,q,q_{cl},q_{ci},c_f) \\ \boldsymbol{C_w}' = \text{analysis increment } (T',p',q_T') \\ \boldsymbol{K} = \text{incremental transform variable between control variable space and model parameter space (uses linearised physics).} \end{array}$

Information on cloud liquid water (Una O'Keeffe)

- 1. Test liquid cloud part only with microwave 23 and 31 GHz observations.
- Validate radiative transfer.
- Compare increments and check impact on fit to observations in next cycle.
- Run simplified assimilation experiment (NOAA-16 only).
- 2. Extend to GeoIR cloudy radiances using ice cloud and cloud fraction in incrementing operator.

qwqu12ff.initanl.20051213120000_sddpz - qwqu06ff.T6.20051213060000_sddpz STASH code: 16256 Level: 850 Validity time: 12:00 on 13/12/2005

Specific humidity at 850 hPa.

Cloudy 23 & 31 GHz Analysis Increments Met Office

qwqu12ff.initanl.20051213120000_sddpi - qwqu06ff.T6.20051213060000_sddpi STASH code: 16256 Level: 850 Validity time: 12:00 on 13/12/2005

Specific humidity at 850 hPa.

Impact on large scale fields fit to analysis

Ice incrementing operator: GeoIR assimilation

40

36

32

28

24

20

16

12

-**4** -8 -12 -16

-20 -24 -28 -32

-36 -40

Observation minus background

ture VT: 16 Jan. 2007 12UTC Analysis by 3D-Var 1-imagery data

© Crown copyright 2007

Use of AMSU-B and MHS data in the presence of ice cloud and precipitation

(Amy Doherty)

Effect of ice at microwave frequencies

Courtesy of Frank Evans

© Crown copyngni 2007

Ice signal in AMSU-B channel 20 Brightness Temperatures: 10s of Kelvin.

183 +/- 7 GHz TB (K)

Simulation without ice

Simulation with ice

183 ± 7 GHz

Interface between forecast model and RTM

- Definition of snow and ice different in forecast model and RTTOV
- Ice hydrometeor density assumptions do not match
- Size distributions do not match
- Fall speed assumptions do not match
- Deblonde et al. (MWR 2007) noted that moist physics schemes are very different between NWP centres and this significantly affects results.
- Do we need to go back to more fundamental model quantities e.g. moisture fluxes and make RTM do more to ensure consistency?
 - Peter Clark said a recent intercomparison of NWP systems showed moisture fluxes are consistent but derived quantities e.g. ice water content are not.

Given IWC, RTM tuned DSD (ARTS) compared to fixed DSD (RTTOV)

AMSU Channel 20 (183 ± 7 GHz)

Results for Experiment 6

PSD = Function of T and IWC (Field *et al.*,2005) Density = 0.132 D^{-1} (Wilson and Ballard, 1999)

Use of sub-mm for ice cloud (Stefan Buehler, Clare Lee etc.)

Sub-mm (from Stefan Buehler, Kiruna Univ.)

IR sees only smallest particles, radar only largest particles

© Crown copyright 2007

Ice Clouds in Climate Models

- Climatology of zonal, annual mean IWP from various models in the IPCC AR4 data archive shows difference up to an order of magnitude.
- Delta-IWP after a CO2 doubling shows also vast differences.
- IWP observations are needed to resolve model differences.

(Figure by Brian Soden, University of Miami)

Possible future instruments to exploit sub-mm...

- CIWSIR: multi-channel sub-mm instrument matching WV sensitivity with difference ice cloud sensitivity. LEO, resolution ~ 15 kms.
- GOMAS: Geostationary MW and sub-mm imager/sounder. From 81 km spatial resolution at 54 GHz to 10 km at 425 GHz. An IGeoLab concept.
- Geostar: similar to GOMAS with synthetic aperture. JPL proposal.

(but GOMAS & Geostar really precipitation missions)

Polarimetric radiometry (Brett Candy)

© Crown copyright 2007

20

Windspeed ms⁻¹

Extra-tropical pmsl impact of QuikSCAT high and low windspeed wind vectors

Ambiguities: QuikSCAT and WindSat

QuikScat

2% 1 wind43% 2 winds33% 3 winds22% 4 winds

WindSat

<0.01% 1 wind <0.01% 2 winds 28% 3 winds

72% 4 winds

Wind Speed and Direction

WindSat Mission Requirements: 2m/s 20deg

Phase 1 suggested useful retrievals down to around 8m/s

Wind Speed Range (m/s)	Standard Deviation of Observation – Background		
	Wind speed (m/s)	Wind Direction (°)	
5-6	1.26 <i>1.29</i> B	21.0 17.2	
6-7	1.20 <i>1.26</i> B	16.8 14.2	
7-8	1.19 <i>1.24</i> B	13.9 12.1	
9-10	1.34 <i>1.33</i>	10.5 9.8	
10+	1.42 <i>1.49</i> B	8.6 9.0 B	

How does this compare to other observing systems?

Met Office

WindSat assimilation experiments

• As Met Office operations in mid-2005 except control had Scat, SSM/I, TC bogus withdrawn.

- Model Resolution N216 ~60km in mid-latitiudes, model top at 40km.
- 4D-Var Analysis scheme, four analyses per day with data windows of 6 hours.
- Period August-September 2005 (active TS season over 20 different storms in 34 days!)
- WindSat treated identically to QuikSCAT (e.g. same ambiguity removal, thinning etc.)

© Crown copyright 2007

Analysis Increments

QuikScat

WindSat

5% of parameters improved, <0.5% degraded

Tropical Cyclone Errors in Analysis Results from 19 cyclones 206 "events"

Much smaller study for ERS-2 in 2001 suggested improvement ~10%

- Cloud and rain limit the use of sounding and surface observations.
- More sophisticated analysis can partly mitigate this loss.
- Analysing cloud prior to assimilation has worked with AIRS.
- Considerable progress has been achieved with direct assimilation of cloudy radiances: both MW and IR.
- Sub-mm sensors could provide new information on bulk ice cloud properties from polar or geo orbit.
- Polarimetric radiometry can replicate much of the information from scatterometers but scatterometers remain the best source of near surface wind vector information, especially for tropical storms.

Questions?

Cloud tests: rain and thick cirrus tests

Radar

AVHRR IR image

Assimilation of cloudy imagery products (Ruth Taylor)