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Monitoring The Assimilation System

ECMWF 4D-Var system handles a large variety of space and surface-

based observations. It combines observations and atmospheric state a 

priori information by using a linearized and non-linear forecast model

Effective monitoring of a such a complex system with  108 degrees of 

freedom and 107 observations is a necessity. Not just a few indicators but 

a more complex set of measures to answer questions like is needed:

How much influent are the observations in the analysis?

How much influence is given to the a priori information?

How much does the estimate depend on one single influential obs?

How much is the observation impact on the forecast?
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Outline

Forecast  Sensitivity to Observation or Observation Impact on Forecast

Equation

FSO Diagnostic Tool

Monitoring the forecast impact: ECMWF Operational configuration

Analysis Sensitivity to Observation or Observation Influence

Ordinary Least Square method 

Findings related to data influence and information content

Toy model: 2 observations

Monitoring the observation influence
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Observation Influence: Influence Matrix in OLS
Tuckey 63, Hoaglin and Welsch 78, Velleman and Welsch 81

The OLS regression model is

y=Xβ+ε

ŷ=Sy
= T -1 Tβ (X X) X y

1T T−=S X(X X) XThe fitted response is

OLS provide  the solution 
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Observation Influence: Influence Matrix Related Findings
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Observation Influence: Influence Matrix in a 
Generalized Least Square Method 
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Synop Surface Pressure Influence

Dynamical Activity
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Aircraft 250 hPa U-Comp Influence

>1

Data dense

Data sparse
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Scatterometer U-Comp Influence

Dynamical Activity
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Toy Model: 2 Observations
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Toy Model: 2 Observations

1 1 1 1( )T T− − − −=S R HB +HR H H

2

2
o

b

r σ
σ

=

x1
x2y2

y1

2
oσ=R I=H I ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 2

2

b

b

σα
ασB

2
1

21122211 +
====

r
SSSS1=α

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−++
−+

−++

−++−++
−+

=

22

2

22

2222

2

12
1

12

1212
1

α
α

α
α

α
α

α
α

rr
r

rr
r

rr
r

rr
r

S

1
1

2211 +
==

r
SS0=α

Sii

r

1

1

1/2

1/3

1/2

α =1

α=0

0



ECMWFDiagnosis of forecasting and data assimilation systems             2009       slide 14

(1) Consideration

• Where observations are dense Sii tends to be small and the 
background sensitivities tend to be large and also the 
surrounding observations have large influence (off-diagonal 
term)

• When observations are sparse Sii and the background 
sensitivity are determined by their relative accuracies (r) and 
the surrounding observations have small influence (off-
diagonal term)
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Toy Model: 2 Observations
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(2) Consideration

• When observation and background have similar accuracies (r), 
the estimate ŷ1 depends on y1 and x1 and an additional term due 
to the second observation. We see that if R is diagonal the 
observational contribution is devaluated with respect to the 
background because a group of correlated background values 
count more than the single observation (2-α2 → 2). Also by 
increasing background correlation, the nearby observation and 
background have a larger contribution
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ECMWF Operational Average Influence and Information Content
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Evolution of the B matrix: B computed from EnDA

Xt+εStochastics
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Evolution of the GOS: Interim Reanalysis
Aircraft 200-300 hPa

1999

2007
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Evolution of the GOS: Interim Reanalysis
AMSU-A ch6

1999

2007
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Evolution of the GOS: Interim Reanalysis
AMSU-A

1999

2007
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Evolution of the GOS: Interim Reanalysis
U-comp Aircraft, Radiosonde, Vertical Profiler, AMV

1999

2007
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Observation Influence Conclusion
The Influence Matrix is well-known in multi-variate linear regression. It is used to 

identify influential data. Influence patterns are not part of the estimates of the model 
but rather are part of the conditions under which the model is estimated

Disproportionate influence can be due to:

incorrect data (quality control)
legitimately extreme observations occurrence

to which extent the estimate depends on these data

Sii=1 Data-sparse Single observation
Model under-confident   (1-Sii)

Sii=0
Data-dense
Model over-confident tuning   (1-Sii)

Thinning is mainly performed to reduce the spatial correlation but also to reduce 
the analysis computational cost

Knowledge of the observations influence helps in selecting appropriate data 
density
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Forecast sensitivity to observation: Equations
from a Roger Daley idea
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Forecast Sensitivity to Observation: Sensitivity Gradient 
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FSO Monitoring ECMWF System: Summer 2006
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The tool provides information on the observation type, subtype, 
variable and level responsible for the forecast error variation
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FSO: Pilot and Wind Profilers FcE contribution Summer 2006
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FSO: Wind Profilers North America Summer 2006

North America “Problem” (OD/RD special topic 2005)

•strong, moist warm flow from the Gulf of Mexico

•wind increments are huge and divergent at 150-250 hPa

• the conclusion was that “increments are not related to bad  
observations or a poor 4D-Var performance”

… under certain meteorological conditions wind profilers measurements 
can be contaminated….(Ackley et al, 1998)
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Mean TCWV Mean CAPE

Summer case 
2006

ERA40 Jan

ERA40 Jun

Mean 850-hPa Wind 
& 

Z500 hPa 

courtesy by Fernando Prates
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Summary FSO wind Profiler

FSO showed a Fc Error increase due to the American wind profiler 
observations.

Southerly flow across SE USA bringing warm and moist air from Gulf 
of Mexico produced strong convective instability in the region, a 
typical situation at this time of the year.

Following Ackley et al report (1998) on wind profiler measurements 
validity “in strong unstable conditions (turbulence) the measure of the 
mean horizontal wind is corrupted affecting the measurements”. 
Suggesting that the forecast impact can change with the 
meteorological situation for the summer 2006 case.
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FSO: Atmospheric Motion Vector FcE Contribution Summer 2006
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FSO AMV 700-1000 hPa: Summer 2006 

v-wind

u-wind

Positive impact Negative impact
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FSO AMV 700-1000 hPa Summer 2006

V-compU-comp

Mean 850hPa wind

Atlantic Ocean: transition between sub-
tropical and extra-tropical from week to 
strong zonal flow

Indian Ocean: well established 
Monsoon circulation

courtesy by Fernando Prates
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FSO Atlantic Ocean: Observation Quality

The strong sinking motion in SH near 30S represents the southern limit of the 
Hadley circulation where the subtropical high cell is located. Cloud suppression  
or low clouds.
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FSO Indian Monsoon Summer 2006: Model bias

A too strong low level flow of Indian 
Summer Monsoon is a well known 
problem in the model as is indicated by 
the JJA mean analysis increments

Mean An inc 925-hPa JJA 2006

v-windu-wind

Diagnostic explorer
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Summary FSO AMVs 

In Summer 2006 FSO showed a Fc error increase due to AMVs

The location of the largest negative impact of the AMVs in Atlantic is 
found close to the region of strong sinking mean motion embedded in 
the Hadley circulation 

Observation quality problem on the height assignment 

Detrimental effect is also observed in the Indian ocean associated with 
a too strong Indian monsoon circulation developed by the model

Model bias
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Operational ECMWF system 
September to December 2008
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Operational ECMWF system
September to December 2008
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Adjoint Diagnostic Conclusion
Over the last decade the assessment of each observation contribution to analysis 

and forecast is among the most challenging diagnostics in data assimilation and 
NWP.

These techniques show how the influence is assigned during the assimilation 
procedure and how is the forecast impact of each observation.

Recently, Daescu (2008) derived a sensitivity equation of an unconstrained 
variational data assimilation system with respect to the main input parameters: 
observation, background and their error covariance matrices.

Observation influence and forecast impact have also been developed in a non-
adjoint context. Junjie Liu et al 2008 and Junjie Liu et al 2009 translated the concepts 
to EnKF system  and also showed that the solution being very accurate, Cross 
Validation can straightforward be applied.

In an operational context , the correct usage of the tools requires a close 
collaboration with synopticians and observation monitoring section.
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