

ESF Exploratory Workshop on Improved Quantitative Fire Description With Multi-Species Inversions Of Observed Plumes

Farnham Castle (United Kingdom), 14-16 September 2009

Martin Wooster, Johannes Kaiser, Martin Schultz

Fire Observations

Fire Assimilation Systems

Scientific Applications

ESF Exploratory Workshop on Fires, Farnham Castle, September 2009

New Fire Observation Deployments

ESF Exploratory Workshop on Fires, Farnham Castle, September 2009

New Fire Observation Deployments

MODIS AOD and Simulated AOD Intercomparison: Greek Fires 2007

Question: Why do the aerosol emissions factors developed or used with satellite observations appear to differ substantially from lab values?

ESF Exploratory Workshop on Fires, Farnham Castle, September 2009

Traditional "Bottom-up" Inventory Approaches

Question: Can we find a sufficiently reliable approach to estimate combustion completeness (using satellite observations or modelling)

Photo's courtesy Sally Archibald, CSIR

ESF Exploratory Workshop on Fires, Farnham Castle, September 2009

Some Early History of Fire "Quantification"

Alexander von Danckelman (1855 – 1919)

"the sun appears in a dull light as during an eclipse or as a mat disc"

Realised the climatic and environmental significance of African biomass burning

Geographer, Mathematician & Meteorologist. Travelled to Congo in 1870's with Stanley.

Weighed dry grass on sqr meter plots, and scaled up based on fraction of Africa covered by savannah.

Some Early History of Fire "Quantification"

Alexander von Danckelman (1855 – 1919)

Realised the climatic and environmental significance of African biomass burning *"the sun appears in a dull light as during an eclipse or as a mat disc"*

Calculated that ~ 20% of tropical African area burns each year, ~ 0.6 Gt biomass.

Global coal consumption ~ 0.3 Gt/yr – so this was huge and likely had great atmospheric & climatic consequences.

Geographer, Mathematician & Meteorologist. Travelled to Congo in 1870's with Stanley.

Weighed dry grass on sqr meter plots, and scaled up based on fraction of Africa covered by savannah.

von Danckelman, A., 1884: Die Bewölkungsverhältnisse des stüdwestlichen Afrikas. – *Meteorol. Zeitschrift* 1, 301– 311.

Brönnimann et al (2009) Biomass burning aerosols and climate – a 19th century Perspective, *Meteorol. Zeitschrift*, Vol. 18, 349-353.

ESF Exploratory Workshop on Fires, Farnham Castle, September 2009

History of fire monitoring

- Forest service "databases" begin monitoring in 19th century
- Aerial observations (Canada, US, Russia) mid-20th century
- Landsat and NOAA POES satellites launched 1970's.
- Early use and prepration for use of satellite data & product development (e.g. GTE TRACE-A, 1992; SCAR-B 95; SAFARI-96)
- Mid-1990s global nightime active fire detection from ATSR/AATSR
- Large scale burned area mapping since early 1990's
- MODIS 2000 global day/night active fire detection & aerosols
- 1998: Global Fire Monitoring Centre Founded
- Early 2000's much greater supply of trace gas species data from satellites, extending into the troposphere (e.g. AURA)
- Mid-2000's continuous global burned area records commenced
- Recent operational monitoring systems emerge making use of fire observations for plume forecasting (e.g. BRAMS, NRL, GEMS etc)

Some Challenges for the future

Quality, quantity and consistency of fire observations

(sensors, retrievals, coverage, longeivity …)

Parameterisation of fire emissions (from fire observation to model boundary condition)

Multi-sensor and multi-species integration Robustness, accuracy & consistency of integrated products

Joining of top down and bottom-up inventory approaches

Obtain the most reliable and consistent emissions estimates

Structure of workshop

Monday Afternoon:

Fire Assimilation Systems and Plume Inversions

- Tuesday Morning:
- Fire Observations
- Tuesday Afternoon:
- Scientific Applications
- Wednesday Morning:
- Synthesis & Conclusions

Fire Assimilation Systems and Plume Inversions

- Inversion and other "top-down" studies:
 - Ichoku (aerosol)
 - Chevallier (CO₂)
- Operational-type systems based currently on bottom-up estimates of fire emissions:
 - INPE-CPTEC: Freitas
 - NRL: Hyer
 - FMI: Joana
 - ECMWF: Kaiser
- Future direction?

More used of combined bottom-up and top-down emissions inventory approaches?

Fire Observations

- The "programmatics" of fire research
 Goldammer
- Field and smoke observations
 Andreae
- Satellite observations
 - Wooster (active fires)
 - San Miguel (burned areas)
 - Turquety (smoke plumes)
- Future directions: combine observations from multiple sensors and of multiple species
- Example Key Question:

How can we steer observations and instruments so they improve in the future and lead to maximum utility and benefit in combination?

Scientific Applications

- Fire Processes and Numerical Simulation
 - Simeoni
- Fires and Climate Change
 - Haywood
 - van der Werf
- Fires and Air quality
 Schultz
- Fires and Ecosystems
 Pereira
- Fires in Numerical Weather Prediction
 de Rosnay
- Example Key Question:

Are current and planned observations & systems suitable for these applications? How might they be enhanced?

Synthesis and Conclusions

