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• Energy and (potential) enstrophy are conserved by the adiabatic,

frictionless governing equations...

• ...but nonlinearity leads to systematic transfers between scales

Meteosat ‘tropospheric

relative humidity’

(red low, green high)

• How well do numerical models handle those transfers, especially

near the truncation limit? ... Source of uncertainty.
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Outline

• Explicit subgrid models vs ILES

• Barotropic vorticity equation as a model problem

Effect of unresolved scales on enstrophy and energy spectra

Effect of some numerical schemes on enstrophy and energy spectra

Parameterization of energy backscatter
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Numerical representation of energy and potential enstrophy

transfers

Foremost, need to remove potential enstrophy. Typically either

(a) use conservative numerics supplemented by some scale-selective

dissipation such as κ∇2n (but note its multiple roles)

or

(b) use inherently dissipative numerics such as semi-Lagrangian or

non-oscillatory finite volume (ILES).

May also include some representation of energy backscatter.
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Implicit Large Eddy Simulation (ILES)

Finite resolution => need to represent effects of unresolved scales:

SG model.

At the same time, all numerical methods have truncation errors.

Can truncation errors play the role of a SG model?

Some success claimed for 3D turbulence. (Except when upscale

effects are important, e.g. near a wall.)

What about (layerwise) 2D turbulence?

Upscale energy transfers, but steeper spectrum so stronger slaving of

small scales to large.
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What if we don’t remove resolved enstrophy?
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There is evidence that models dissipate too much energy

If we remove enstrophy at horizontal wavenumber kdiss at a rate Ż

then we necessarily remove KE at a rate Ė = Ż/k2
diss ≥ Ż/k2

max.

At current climate resolutions this is too large.

E.g. Ż ∼ 10−15 s−3. Need Ė ∼ 10−5 m−2s−3 so kdiss ∼ 10−5 m−1.
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What does ILES or any explicit SG model need to capture?

Barotropic vorticity equation as model problem:

Dζ

Dt
= 0; ∇2ψ = ζ; v = ∇⊥ψ
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Statistically steady turbulence

t = 200 Forcing at n = 16;

scale-independent

dissipation;

and ∇8 small-scale

dissipation.
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Spectral interactions associated with truncated scales
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Schematic of energy transfers

Wavenumber

Energy

Cascade local in k; backscatter nonlocal.

(See also Huang and Robinson 1997; Thompson and Young 2007)

Page 11



Energy and Enstrophy cascades
John Thuburn

Spectral interactions as represented by ∇4 and ∇8
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UTOPIA advection of ζ

Quasi-third-order upwind scheme.

Inherently dissipative, but more scale-selective than first-order

upwind.

Should be comparable to semi-Lagrangian with cubic interpolation.

Can include a flux limiter to prevent over/under-shoots.
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Spectral interactions as represented by UTOPIA scheme
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Anticipated Potential Vorticity Method

Sadourny and Basdevant (1985).

∂v

∂t
+ (ζ −D)k̂× v + ∇

(

p+
v

2

2

)

= 0

∂ζ

∂t
+ ∇.(vζ) = ∇.(vD)

Choose D = θL(v.∇ζ). Here L ≡ 1 or L ≡ −∇2

Ż = −θ

∫

(v.∇ζ)2 dA or Ż = −θ

∫

(∇(v.∇ζ))2 dA
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Spectral interactions as represented by APVM
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Can we represent the energy backscatter to large scales?

Scale-dependent

dissipation/anti-dissipation

Koshyk and Boer (1995)

In = IR
n + IU

n ; IU
n = −2φnEn
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A simple backscatter scheme for BVE

Let ζ∗ = UTOPIA(ζn)

and let δE = E(ζn) − E(ζ∗)

Choose a vorticity pattern δζ and let ζn+1 = ζ∗ + αδζ.

α = −
δE

∫

ψδζ dA

gives energy conservation (to an excellent approximation).
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Which vorticity pattern δζ to use?

E.g.

δζ1 = ζ
4∆x

(large scales)

δζ2 = ζ − ζ
4∆x

(small scales)

δζ2 was found to work better in numerical tests, giving better energy

statistics and also a small but measurable improvement in l2 errors.

(But this is not really ‘backscatter’; more of an energy fixer!)
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Decaying turbulence E and Z time series
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Possible improvements to ‘backscatter’ scheme

• Use scale similarity to derive δζ

• Use spectral dissipation characteristics of basic scheme to derive δζ
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Discussion - extension to more complex flows

• The effect of finite Rossby radius;

• Transition to k−5/3 energy cascade regime;

• Extension to realistic 3D flow: available vs unavailable energy;

fronts; convection; orography; other physical processes...
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Conclusions

• For the BVE, explicit calculation of the effects of unresolved scales

shows enstrophy removal near the truncation limit and energy input

at the most energetic scales. Very robust.

• Both ILES schemes and simple explicit dissipation schemes can

remove enstrophy at small scales (but are typically not scale-selective

enough

• Neither ILES schemes nor standard SG models capture the energy

backscatter.

• A simple ‘backscatter’ model can improve energy statistics and l2

errors (but it’s really an energy fixer).

• It should be possible to extend this approach to more complex flow.
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Subgrid forcing of vorticity

∂tζ + ∂j

(

vjζ
)

= SG = ∂j

(

vjζ − vjζ
)
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Scale similarity of backscatter?
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