

## Energy and Enstrophy Cascades in Numerical Models

John Thuburn (University of Exeter), James Kent (Now University of Michigan), Nigel Wood (Met Office)

ECMWF, 20 June 2011



- Energy and (potential) enstrophy are conserved by the adiabatic, frictionless governing equations...
- ...but nonlinearity leads to systematic transfers between scales



Meteosat 'tropospheric relative humidity' (red low, green high)

• How well do numerical models handle those transfers, especially near the truncation limit? ... Source of uncertainty.



#### Outline

- Explicit subgrid models vs ILES
- Barotropic vorticity equation as a model problem

Effect of unresolved scales on enstrophy and energy spectra Effect of some numerical schemes on enstrophy and energy spectra Parameterization of energy backscatter



# Numerical representation of energy and potential enstrophy transfers

Foremost, need to remove potential enstrophy. Typically either

(a) use conservative numerics supplemented by some scale-selective dissipation such as  $\kappa \nabla^{2n}$  (but note its multiple roles)

or

(b) use inherently dissipative numerics such as semi-Lagrangian or non-oscillatory finite volume (ILES).

May also include some representation of *energy backscatter*.



Implicit Large Eddy Simulation (ILES)

Finite resolution => need to represent effects of unresolved scales: SG model.

At the same time, all numerical methods have truncation errors.

Can truncation errors play the role of a SG model?

Some success claimed for 3D turbulence. (Except when upscale effects are important, e.g. near a wall.)

What about (layerwise) 2D turbulence?

Upscale energy transfers, but steeper spectrum so stronger slaving of small scales to large.











#### There is evidence that models dissipate too much energy

If we remove enstrophy at horizontal wavenumber  $k_{\text{diss}}$  at a rate  $\dot{Z}$  then we necessarily remove KE at a rate  $\dot{E} = \dot{Z}/k_{\text{diss}}^2 \ge \dot{Z}/k_{\text{max}}^2$ .

At current climate resolutions this is too large.

E.g.  $\dot{Z} \sim 10^{-15} \,\mathrm{s}^{-3}$ . Need  $\dot{E} \sim 10^{-5} \,\mathrm{m}^{-2} \mathrm{s}^{-3}$  so  $k_{\mathrm{diss}} \sim 10^{-5} \,\mathrm{m}^{-1}$ .



#### What does ILES or any explicit SG model need to capture?

Barotropic vorticity equation as model problem:

$$\frac{D\zeta}{Dt} = 0; \qquad \nabla^2 \psi = \zeta; \qquad \mathbf{v} = \nabla^\perp \psi$$



#### Statistically steady turbulence

t = 200



Forcing at n = 16; scale-independent dissipation; and  $\nabla^8$  small-scale dissipation.





#### Spectral interactions associated with truncated scales





#### Schematic of energy transfers



Cascade local in k; backscatter nonlocal.

(See also Huang and Robinson 1997; Thompson and Young 2007)



#### Spectral interactions as represented by $\nabla^4$ and $\nabla^8$





UTOPIA advection of  $\zeta$ 

Quasi-third-order upwind scheme.

Inherently dissipative, but more scale-selective than first-order upwind.

Should be comparable to semi-Lagrangian with cubic interpolation.

Can include a flux limiter to prevent over/under-shoots.



#### Spectral interactions as represented by UTOPIA scheme





#### Anticipated Potential Vorticity Method

Sadourny and Basdevant (1985).

$$\frac{\partial \mathbf{v}}{\partial t} + (\zeta - D)\hat{\mathbf{k}} \times \mathbf{v} + \nabla \left( p + \frac{\mathbf{v}^2}{2} \right) = 0$$

$$\frac{\partial \zeta}{\partial t} + \nabla . (\mathbf{v}\zeta) = \nabla . (\mathbf{v}D)$$

Choose  $D = \theta \mathcal{L}(\mathbf{v}.\nabla \zeta)$ . Here  $\mathcal{L} \equiv 1$  or  $\mathcal{L} \equiv -\nabla^2$ 

$$\dot{Z} = -\theta \int (\mathbf{v} \cdot \nabla \zeta)^2 dA$$
 or  $\dot{Z} = -\theta \int (\nabla (\mathbf{v} \cdot \nabla \zeta))^2 dA$ 



#### Spectral interactions as represented by APVM





#### Can we represent the energy backscatter to large scales?

### Scale-dependent dissipation/anti-dissipation Koshyk and Boer (1995)



$$I_n = I_n^{\mathrm{R}} + I_n^{\mathrm{U}}; \qquad I_n^{\mathrm{U}} = -2\phi_n E_n$$



A simple backscatter scheme for BVE

Let  $\zeta^* = \text{UTOPIA}(\zeta^n)$ 

and let  $\delta E = E(\zeta^n) - E(\zeta^*)$ 

Choose a vorticity pattern  $\delta \zeta$  and let  $\zeta^{n+1} = \zeta^* + \alpha \delta \zeta$ .

$$\alpha = -\frac{\delta E}{\int \psi \delta \zeta \, dA}$$

gives energy conservation (to an excellent approximation).



Which vorticity pattern  $\delta \zeta$  to use?

E.g.  $\delta \zeta_1 = \overline{\zeta}^{4\Delta x}$  (large scales)  $\delta \zeta_2 = \zeta - \overline{\zeta}^{4\Delta x}$  (small scales)

 $\delta \zeta_2$  was found to work better in numerical tests, giving better energy statistics and also a small but measurable improvement in  $l_2$  errors. (But this is not really 'backscatter'; more of an energy fixer!)



#### Decaying turbulence E and Z time series





#### Possible improvements to 'backscatter' scheme

- Use scale similarity to derive  $\delta \zeta$
- Use spectral dissipation characteristics of basic scheme to derive  $\delta\zeta$



#### **Discussion** - extension to more complex flows

- The effect of finite Rossby radius;
- Transition to  $k^{-5/3}$  energy cascade regime;
- Extension to realistic 3D flow: available vs unavailable energy; fronts; convection; orography; other physical processes...



#### Conclusions

- For the BVE, explicit calculation of the effects of unresolved scales shows enstrophy removal near the truncation limit and energy input at the most energetic scales. Very robust.
- Both ILES schemes and simple explicit dissipation schemes can remove enstrophy at small scales (but are typically not scale-selective enough
- Neither ILES schemes nor standard SG models capture the energy backscatter.
- A simple 'backscatter' model can improve energy statistics and  $l_2$  errors (but it's really an energy fixer).
- It should be possible to extend this approach to more complex flow.



#### Subgrid forcing of vorticity



$$\partial_t \overline{\zeta} + \partial_j \left( \overline{v_j} \overline{\zeta} \right) = \mathrm{SG} = \partial_j \left( \overline{v_j} \overline{\zeta} - \overline{v_j} \overline{\zeta} \right)$$



#### Scale similarity of backscatter?

