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Statistical motivation

The statistical motivation is the same as for multi-model 
ensembles:

C=0.5(A+B), with A and B: N(mean zero, variance 1) =>
                 C: N(mean zero, variance 0.5). 

Taking the mean of independent estimate reduces error and the 
difference between the estimates gives information on the 
reliability.

Using multiple parameterizations of similar quality will improve the 
reliability and resolution of the ensemble system.

 



No perfect model

It would be neat to have the laws of nature, in the form of a 
forecast model, coded into a computer. One could maybe 
accept some unknown parameters which will eventually be 
estimated accurately from observations.

As we know, such a model can only exists in our dreams.

The reality is that we don't know what equations to use at 
any resolution we can afford to use on a computer. We 
might want to use different equations over ocean or land, in 
the tropics or the mid-latitudes or even for the night and the 
day.    



Closure in turbulence

From a first course in turbulence (Tennekes and Lumley, 
1972):

“... the closure problem in turbulence theory: one has to 
make (very often ad hoc) assumptions to make the number 
of equations equal to the number of unknowns.”

“The success of attempts to solve problems in turbulence 
depends strongly on the inspiration involved in making the 
crucial assumption”.



closure in cumulus convection

From Arakawa (1993) with regard to cumulus convection: 
“most individual clouds, in which condensation takes place, are 
subgrid-scale for the conventional grid size of general circulation 
and numerical weather prediction models. Then, for a set of 
model equations to be closed, we must formulate the collective 
effect of subgrid-scale clouds in terms of prognostic variables of 
grid scale.”
“The core of the parameterization problem is, therefore, in the 
choice of appropriate closure assumptions.”  
“The conceptual framework for cumulus parameterization, 
however, is still in the developing stage and there exist great 
uncertainties in choosing appropriate closures. Correspondingly, 
a number of parameterization schemes with different closures 
have been proposed.”   



The Grell-Dévényi ensemble convection 
approach

In the work by Grell and Dévényi (Geophysical Research 
Letters, 2002), a number of different closure hypotheses is 
made available in the same subroutine. The 16 different 
closures can interact with any of the other closures giving a 
potential total of 13824 different schemes.

It is proposed to use a Bayesian assimilation method to 
determine the likelihood that a particular closure is correct.

In spite of the great potential of the approach, it is more 
common to select available parameterizations for deep 
convection to form an ensemble system.



The planetary boundary layer

For the planetary boundary layer, we have to deal with both 
small-scale (local) and large-scale (non-local) turbulence.

A large number of parameterizations have been proposed. 
Usually these are named after people, institutions or models: 
Blackadar, Burk-Thompson, ACM2, Bougeault-Lacarrère, MRF, 
MYJ, … .

Some schemes are actually mixtures of different schemes (e.g: 
Blackadar + Bougeault-Lacarrère).

Ideally, in a modular environment, one would have easy access 
to alternative formulations while staying in the same framework. 
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Can we learn something?

For, in particular,
1) deep convection,
2) the planetary boundary layer,
3) the surface,
we do not have a universally accepted set of equations.

Using an ensemble of multiple parameterizations accepts 
this unfortunate situation in a pragmatic manner.

It is a challenge to deal with the available information in a 
constructive manner to actually learn about model physics.  



The growth of perturbations

Eventually evolving errors project on large-scale growing modes.
 
This observation led to the development of the breeding and 
singular vector methods for ensemble prediction. 

Thus, whatever perturbation strategy is used, medium-range EPS 
systems have fairly similar spread characteristics after a few days 
(Buizza et al. 2005, A comparison of the ECMWF, MSC and 
NCEP Global Ensemble Prediction Systems).

It follows that short-range forecasts are more suitable to 
determine the validity of a perturbation strategy. 



The Ensemble Kalman Filter (EnKF)

For an EnKF, it is crucial to have appropriate error statistics 
for short-range forecasts.

Fujita, Stensrud and Dowell (2007, Surface Data 
Assimilation Using an Ensemble Kalman Filter Approach 
with Initial Condition and Model Physics Uncertainties) 
assimilate hourly surface surface observations over a 
continental domain.

To sample model error they use 4 different convection 
schemes, 4 different PBL schemes, 3 radiation schemes 
and 3 surface schemes. 



Conclusions of Fujita et al. (2007)

“Particularly important are the improvements in the location 
and structure of mesoscale features that are seen when 
using the ensemble Kalman filter. The ICPH ensemble 
shows considerable improvement in the placement and 
intensity of the dryline, dryline bulges, frontal boundary, PBL 
depth and structure, and rainbands that form during both 
days studied”.

Note: ICPH=Initial Condition + PHysics Perturbation



Meng and Zhang (2007) 

“Through various observing system simulation experiments, the 
performance of an ensemble Kalman filter is explored in the 
presence of significant model error caused by physical 
parameterization. The EnKF is implemented in the mesoscale 
model MM5 to assimilate synthetic sounding and surface data 
derived from the truth simulations at typical temporal and spatial 
resolutions for the cold-season snowstorm event that occurred on 
24-26 January 2000 and the warm-season MCV event that 
occurred on 10-13 June 2003. 
Results show that although the performance of the EnKF is 
degraded by different degrees when a perfect model is not used, 
the EnKF can work fairly well in different kind of imperfect model 
scenarios.” 



Houtekamer, Mitchell and Deng (2009) 

Using a semi-operational global EnKF:

• “The use of the multimodel option improves assimilation 
results in particular for temperature in the lower 
troposphere.”

• “the multimodel and PTP (Physical Tendency 
Perturbation) option both sample uncertainty in the 
physical tendencies but, by selecting alternative legitimate 
configurations of the model physics, the multimodel option 
samples that uncertainty in a more appropriate manner”.

• “the SKEB (Stochastic Kinetic Energy Backscatter) 
algorithm that had been adjusted for optimal performance 
in the medium-range EPS could not be used to improve 
EnKF performance”.



Getting a complete picture

In EnKF implementations using real observations, we need 
“model error forcing” much bigger than can be justified or 
obtained with multi-parameterization, SKEB or PTP approaches. 
Apparently the “model error” is partly necessary to account for 
data-assimilation assumptions (like having independent 
observational errors with no bias).  

To eliminate these assumptions, we would need to perform an 
Observation System Simulation Experiment with an EnKF and a 
nature run obtained with a different model. In such an 
environment, all unexplained error would truly be model error and 
adding legitimate perturbations would improve results.



The need for a list

Ideally, one would have a long list of critical decisions made 
in the design of the forecast model. Different centers would 
have different lists and by changing the list one could mimic 
the forecast model of another center.

Random sampling options from the list would lead to very 
good sampling of model error.

Problems: 
i) it would be very difficult to write down a comprehensive 
list.
ii) parameterizations are tuned together for optimal results.  



Conclusion

We have no perfect set of model equations and have some liberty 
to use a different set.

Different parameterizations are often selected for deep 
convection, for the planetary boundary layer and the surface. We 
need more modular forecast models in which alternative 
formulations are readily accessible for users. One should not aim 
at a having single best model.

The Ensemble Kalman Filter can be used to validate strategies to 
sample model error.
We don't know how large the parameterization error is. In a data-
assimilation cycle, it would seem to be relatively small. 



Thank you for your attention.

Questions?



Post-processing

Using multiple parameterizations, we increase the spread of the 
ensemble and we sample possible biases. Consequently, the 
need for a separate post-processing step reduces.

If post-processing is performed anyway, it needs to be done 
separately for each member of the ensemble (i.e. each set of 
parameterizations).

Ideally, for the ultimate EPS, post-processing would not be 
necessary. However, until the ensemble is perfect, we can get 
improvement from post-processing. The need for the associated 
long calibration periods can slow ensemble development.



Ensemble design: democratic

In a democratic ensemble design, every parameterization is 
used as frequently as any other.

This permits having more differences between members 
and thus to better sample model error.

To use the verifications for research on parameterizations, 
one would have to assume that the impact of different 
parameterizations is linear (Houtekamer and Lefaivre, 
1997). In practice, for PBL and deep convection, this 
assumption does not hold.



Ensemble design: staircase

An ensemble can be designed such that individual members 
give information on individual parameterizations (e.g. Mullen 
and Baumhefner 1988). 

Staircase model:
 Member 1 = control
 Member 2 = control + some change
 Member 3 = Member 2 + some other change

In practice, modelers don't like to use the staircase. They 
much prefer comparing a single run against observations 
from a measurement campaign in a case-study. 
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