Stochastic tendency perturbations for NWP ensembles

Martin Leutbecher

European Centre for Medium-Range Weather Forecasts

Workshop on Representing Model Uncertainty in numerical weather prediction (NWP) models and in climate models

Acknowledgements: Glenn Shutts, Martin Steinheimer & Peter Bechtold Lars Isaksen, Massimo Bonavita & Roberto Buizza Frederic Vitart, Tim Stockdale, Thomas Jung and Tim Palmer

Outline

Introduction

- Tendency perturbations used in ECMWF ensembles
 - Stochastically Perturbed Parameterization Tendencies (SPPT)
 - Stochastic Kinetic Energy Backscatter (SKEB)

Impact of tendency perturbations on the EPS

- 4 Model uncertainty and analysis uncertainty
 - Kalman filter
 - Ensemble of 4D-Vars (EDA)

Summary

E 6 4 E 6

Estimating model error statistics

truth versus (unperturbed) model mismatches over interval Δt

- mismatches $\mathbf{x}_f \mathbf{x}_t$ are state vectors
- spatial, multi-variate and temporal correlations matter
- error will be a function of the initial state

Estimating model error statistics

truth versus (unperturbed) model mismatches over interval Δt

- mismatches $\mathbf{x}_f \mathbf{x}_t$ are state vectors
- spatial, multi-variate and temporal correlations matter
- error will be a function of the initial state

Estimating model error statistics (II)

estimate of truth versus model mismatches over interval Δt

Leuth	echer	CECMV

... NWP ensembles

Estimating model error statistics (II)

estimate of truth versus model mismatches over interval Δt

Leuth	bech	er (0	EC	Μ	W
-------	------	------	---	----	---	---

Estimating model error statistics (II)

other estimate of truth versus model mismatches over interval Δt

Leuth	bech	er (0	EC	Μ	W
-------	------	------	---	----	---	---

Estimating model error covariances

observable are $\mathbf{G}_a = \langle (\mathbf{x}_f - \mathbf{x}_a)(\mathbf{x}_f - \mathbf{x}_a)^{\mathrm{T}} \rangle$ and $\mathbf{G}_o = \langle (\mathbf{H}\mathbf{x}_f - \mathbf{y})(\mathbf{H}\mathbf{x}_f - \mathbf{y})^{\mathrm{T}} \rangle$

under some simplifying assumptions (linearity, temporally uncorrelated errors) we expect

 $\mathbf{G}_{o} = \mathbf{H}\mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}} + \mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}} + \mathbf{R}$ and $\mathbf{G}_{a} = \mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}$

Estimating model error covariances

observable are $\mathbf{G}_a = \langle (\mathbf{x}_f - \mathbf{x}_a)(\mathbf{x}_f - \mathbf{x}_a)^{\mathrm{T}} \rangle$ and $\mathbf{G}_o = \langle (\mathbf{H}\mathbf{x}_f - \mathbf{y})(\mathbf{H}\mathbf{x}_f - \mathbf{y})^{\mathrm{T}} \rangle$

under some simplifying assumptions (linearity, temporally uncorrelated errors) we expect

 $\mathbf{G}_{o} = \mathbf{H}\mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}} + \mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}} + \mathbf{R} \qquad \text{and} \qquad \mathbf{G}_{a} = \mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}$

IF, initial uncertainty A (and R) precisely known, then

$$\label{eq:Q} \textbf{Q} = \textbf{G}_{\textit{a}} - \textbf{M} \textbf{A} \textbf{M}^{\mathrm{T}} - \textbf{A} \quad \text{and} \quad \textbf{H} \textbf{Q} \textbf{H}^{\mathrm{T}} = \dots$$

yields the model error covariance \mathbf{Q} . Vice versa, errors in \mathbf{A} (and \mathbf{R}) will alias into errors of our estimate of \mathbf{Q} ($\mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}}$).

Estimating model error covariances

observable are $\mathbf{G}_a = \langle (\mathbf{x}_f - \mathbf{x}_a)(\mathbf{x}_f - \mathbf{x}_a)^{\mathrm{T}} \rangle$ and $\mathbf{G}_o = \langle (\mathbf{H}\mathbf{x}_f - \mathbf{y})(\mathbf{H}\mathbf{x}_f - \mathbf{y})^{\mathrm{T}} \rangle$

under some simplifying assumptions (linearity, temporally uncorrelated errors) we expect

 $\mathbf{G}_{o} = \mathbf{H}\mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}} + \mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}} + \mathbf{R} \qquad \text{and} \qquad \mathbf{G}_{a} = \mathbf{M}\mathbf{A}\mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}$

IF, initial uncertainty A (and R) precisely known, then

$$\label{eq:Q} \textbf{Q} = \textbf{G}_{a} - \textbf{M} \textbf{A} \textbf{M}^{\mathrm{T}} - \textbf{A} \quad \text{and} \quad \textbf{H} \textbf{Q} \textbf{H}^{\mathrm{T}} = \dots$$

yields the model error covariance \mathbf{Q} . Vice versa, errors in \mathbf{A} (and \mathbf{R}) will alias into errors of our estimate of \mathbf{Q} ($\mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}}$).

The analysi error covariance **A** depends on the assimilation technique α , **H**, **R** and **Q**. Thus, we have

$$\mathbf{G}_{a} = \mathbf{M} \, \mathbf{A}(\alpha, \mathbf{H}, \mathbf{R}, \mathbf{Q}) \, \mathbf{M}^{\mathrm{T}} + \mathbf{Q} + \mathbf{A}(\alpha, \mathbf{H}, \mathbf{R}, \mathbf{Q}) \tag{1}$$

 \rightarrow a nontrivial inverse problem!

Lei	utbecher	CECMW

5 / 29

Ambiguity between initial uncertainty and model uncertainty

 Without constraining the estimate of A (completely) by data assimilation, both the representation of initial uncertainties (A) and tendency perturbations (Q) need to be set for an ensemble forecasting system.

Ambiguity between initial uncertainty and model uncertainty

- Without constraining the estimate of A (completely) by data assimilation, both the representation of initial uncertainties (A) and tendency perturbations (Q) need to be set for an ensemble forecasting system.
- However, setting **A** and **Q** for ensemble forecasts may be an under-determined problem!
- If the estimate of A is "too small" (ie. the ensemble variance due to initial uncertainty represented by A is lower than the error variance), "larger" Q can compensate.

(B)

Ambiguity between initial uncertainty and model uncertainty

- Without constraining the estimate of **A** (completely) by data assimilation, both the representation of initial uncertainties (**A**) and tendency perturbations (**Q**) need to be set for an ensemble forecasting system.
- However, setting **A** and **Q** for ensemble forecasts may be an under-determined problem!
- If the estimate of A is "too small" (ie. the ensemble variance due to initial uncertainty represented by A is lower than the error variance), "larger" Q can compensate.
- Consider for instance αà and βQ for two estimates of analysis error covariance and model error covariance.
 Can we determine *unambiguously* (α, β) for a NWP ensemble?

u850hPa, Northern Extra-tropics

spread_em, rmse_em 2010041300-2010050200 (20)

u850hPa, Northern Extra-tropics

ContinuousRankedProbabilityScore 2010041300-2010050200 (20)

u850hPa, Northern Extra-tropics

ContinuousIgnoranceScoreGaussian, ContinuousIgnoranceScoreGaussianClimate 2010041300-2010050200 (20)

Model uncertainty representation at ECMWF Status quo

The EPS uses

• Stochastically Perturbed Parameterization Tendencies (SPPT) a.k.a. stochastic physics

• Stochastic Kinetic Energy Backscatter (SKEB)

Model uncertainty representation at ECMWF Status quo

The EPS uses

 Stochastically Perturbed Parameterization Tendencies (SPPT) a.k.a. stochastic physics

• Stochastic Kinetic Energy Backscatter (SKEB)

The trajectory and the nonlinear forecast of the perturbed members of the EDA (Ensemble of 4D-Vars) use SPPT only.

- Work is in progress to make the representation of model uncertainties in the nonlinear forecasts in EPS and EDA consistent
- Full consistency requires more \rightarrow weak-constraint 4D-Var

- A TE N - A TE N

Stochastically Perturbed Parameterization Tendencies SPPT

- Physics tendencies P perturbed by $\Delta P = rP$, with r a random pattern
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer (1999)

Stochastically Perturbed Parameterization Tendencies SPPT

- Physics tendencies P perturbed by $\Delta P = rP$, with r a random pattern
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer (1999)
- 2D Random pattern r uses AR-1 processes in spectral space and is smooth in space and time (instead of 10°× 10° tiles changing every 6 time steps)
- Three components with different correlation scales:
 6 h, 3 d, 30 d and 500 km, 1000 km, 2000 km with standard deviations of 0.52, 0.18, 0.06, respectively

Stochastically Perturbed Parameterization Tendencies SPPT

- Physics tendencies P perturbed by $\Delta P = rP$, with r a random pattern
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer (1999)
- 2D Random pattern r uses AR-1 processes in spectral space and is smooth in space and time (instead of 10°× 10° tiles changing every 6 time steps)
- Three components with different correlation scales:
 6 h, 3 d, 30 d and 500 km, 1000 km, 2000 km with standard deviations of 0.52, 0.18, 0.06, respectively
- Gaussian distribution, truncated at $\pm 2\sigma$ (instead of uniform distr.)
- Same pattern r for T, q, u, v (instead of an independent patterns for each variable)

see Tech Memo 598, Palmer et al. (2009) for more details

- 3

- 4 同 6 4 日 6 4 日 6

Multi-variate uniform versus univariate Gaussian

Leutbecher	CECMV
------------	-------

Multi-variate uniform versus univariate Gaussian

multi-variate uniform in 4 dimensions:

- probability to be within interquartile range for all four variables is 1/16
- probability to perturb at least one of the four variables in excess of 0.92 of the maximum perturbation amplitude is $0.5 = (1 2 \times 0.08)^4$.

Tendency pert^{ns} and the frequency of heavy precipitation

multi-variate uniform distribution of (u, v, T, q) ten. perturbations uni-variate Gaussian tendency perturbations

• = • •

SPPT pattern

Stochastic Kinetic Energy Backscatter SKEB

- Rationale: A fraction of the dissipated energy is backscattered upscale and acts as streamfunction forcing for the resolved-scale flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)
- Streamfunction forcing = $[bD]^{1/2} F(\mathbf{x}, t)$, where b, D, F denote the backscatter ratio, the (smoothed) total dissipation rate and the 3-dim evolving pattern, respectively

Stochastic Kinetic Energy Backscatter SKEB

- Rationale: A fraction of the dissipated energy is backscattered upscale and acts as streamfunction forcing for the resolved-scale flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)
- Streamfunction forcing = $[bD]^{1/2} F(\mathbf{x}, t)$, where b, D, F denote the backscatter ratio, the (smoothed) total dissipation rate and the 3-dim evolving pattern, respectively
- Total dissipation rate: sum of
 - "numerical" KE dissipation by numerical diffusion + interpolation in semi-Lagrangian advection
 - dissipation from orographic gravity wave drag parameterization
 - an estimate of the deep convective KE production
- Boundary layer dissipation is omitted

see also Tech Memo 598, Palmer et al. (2009) for further details

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

SKEB forcing

- *F* uses AR-1 processes in spectral space with random vertical phase shifts
- decorrelation time of pattern F is set to 7 h
- structure of pattern constrained by results from coarse-graining studies with T1279 IFS and CRM

Leutbecher CECMWF

... NWP ensembles

Recent operational implementations affecting the EPS

3

くほと くほと くほと

Recent operational implementations affecting the EPS

Note, EDA uses the 1-scale version of SPPT (as implemented in 35r3 in the EPS)

Impact of tendency perturbations on the EPS

for a fixed representation of initial uncertainties

- initial perturbations as used since 36r4
 - EDA perturbations instead of evolved SV perturbations
 - ▶ 50% reduced amplitude of initial SV perturbations
- 40 cases: Aug/Sep 2008 and Oct-Dec 2009
- T639, 50 member
- cycle 36r2
- 6 different tendency perturbations
 - no ten. perturbations
 - original SPPT, BMP99 (Buizza, Miller & Palmer, 1999)
 - single-scale SPPT (SPPT1 as implemented in 35r3)
 - three-scale SPPT (SPPT3 as implemented in 36r4)
 - stochastic kinetic energy backscatter (SKEB)
 - SPPT3+SKEB

16 / 29

Ensemble standard deviation (no symbols), EM RMSE (+)

v850hPa, Northern Mid-latitudes

spread_em, rmse_em 2008081012-2009122812 (40)

Ignorance score (=Logarithmic score)

 $CIgnS = -log(p_{fc}(y))$; the smaller the better

v850hPa, Northern Mid-latitudes

ContinuousIgnoranceScoreGaussian 2008081012-2009122812 (40)

Spread-reliability of 500 hPa height — 20° – 90° N

Jan 2010 configuration versus Nov 2010 configuration

Spread-reliability of 500 hPa height — 20° – 90° N

Impact of halved SV perturbation amplitude

- Main improvement from reduced SV perturbation amplitude
- Probabilistic skill of 0.5 × SV is inferior to 36R2 configuration

- smaller contribution from 36R1 \rightarrow 36R2
- upgraded tendency perturbations prevent underdispersion

20 / 29

Kalman filter and model uncertainty see Daley & Menard (1993)

• variance evolution in the Kalman filter:

forecast step	$P^f = MP^{a}M^{\mathcal{T}} + Q$	(2)
analysis step	$\mathbf{P}^{a} = (\mathbf{I} - \mathbf{K} \mathbf{H}) \mathbf{P}^{f}, \qquad \text{where}$	(3)
gain matrix	$K = P^f H^T (H P^f H^T + R)^{-1}$	(4)

Kalman filter and model uncertainty see Daley & Menard (1993)

• variance evolution in the Kalman filter:

forecast step	$P^f = MP^aM^{\mathcal{T}} + Q$	(2)
analysis step	$\mathbf{P}^{a}=\left(\mathbf{I}-\mathbf{K}\mathbf{H} ight)\mathbf{P}^{f},\qquad$ where	(3)
gain matrix	$K = P^f H^T (H P^f H^T + R)^{-1}$	(4)

- Equivalence between 4D-Var and a Kalman smoother
- Many ensemble assimilation techniques aim at approximating the Extended Kalman filter

Kalman filter and model uncertainty see Daley & Menard (1993)

• variance evolution in the Kalman filter:

forecast step	$P^f = MP^aM^{\mathcal{T}} + Q$	(2)
analysis step	$\mathbf{P}^{a} = (\mathbf{I} - \mathbf{K} \mathbf{H}) \mathbf{P}^{f}, \qquad$ where	(3)
gain matrix	$K = P^f H^T (H P^f H^T + R)^{-1}$	(4)

- Equivalence between 4D-Var and a Kalman smoother
- Many ensemble assimilation techniques aim at approximating the Extended Kalman filter
- What is the impact of model uncertainty in the simplest possible KF?
- DM93 studied properties of the KF with stationary R M Q H for the case where all matrices can be diagonalized simultaneously
 ⇒ independent KF's, each provides the analysis for one scalar variable

Sensitivity to model error variance

Stationary Kalman filter for a scalar variable a_{1}

• all variances normalized by $\mathbf{R} = \sigma_o^2$

٧F

Le	utl	bec	her	_ €	CE	СМ

22 / 29

Impact of representing model uncertainties

in EDA and EPS on ensemble forecasts

- 3 EDA experiments; (10 member, T399):
 - no tendency perturbations
 - SPPT
 - SPPT+SKEB
- 5 EPS experiments (20 member, T639):

pertn.	perturbation in EPS		
in EDA	None	SPPT+SKEB	
None	Off-Off	Off-ON	
SPPT+SKEB	ON-Off	ON-ON	
SPPT		SPPT-ON	

- no SV perturbations
- EDA perturbations defined with respect to EDA mean
- analysis uncertainties accounted for in verification
- 20 cases in April/May 2010
- cycle 36r4
- see also earlier results in Sec. 3 of Tech Memo 598, Palmer et al. (2009)

Leutbecher CECMWF

Ensemble standard deviation (no symbols), EM RMSE (+) $500 \text{ hPa geopotential} - 35^{\circ}\text{N} - 65^{\circ}\text{N}$

Ensemble standard deviation (no symbols), EM RMSE (+) $500 \text{ hPa geopotential} - 35^{\circ}\text{N} - 65^{\circ}\text{N}$

Continuous Ignorance Score

500 hPa geopotential — $35^{\circ}N-65^{\circ}N$

Continuous Ignorance Score

500 hPa geopotential — $35^{\circ}N-65^{\circ}N$

Spread-reliability: t = 48 hNorthern mid-latitudes $35^{\circ}\text{N}-65^{\circ}\text{N}$

Spread-reliability: t = 48 hNorthern mid-latitudes $35^{\circ}\text{N}-65^{\circ}\text{N}$

Spread-reliability: meridional wind t = 48 hTropics 20°S–20°N

Leutbecher CECMWF

... NWP ensembles

< 日 → < 三 → < 三 → 三 / ○ < ○ Reading, 20-24 June '11 27 / 29

Spread-reliability: meridional wind t = 48 hTropics 20°S–20°N

Leutbecher CECMWF

... NWP ensembles

 ▲
 ▲
 ▲
 ▲
 ▲
 ▲

 <</td>
 <</td>

 <</td>

Conclusions

- Stochastic tendency perturbations used in the operational ECMWF ensembles contribute significantly to ensemble spread and improve probabilistic skill.
- Improved ensemble forecast variances and improved probabilistic skill through a combination of
 - introduction of EDA perturbations
 - reduced amplitude for SV perturbations
 - more active representation of model uncertainties

Conclusions

- Stochastic tendency perturbations used in the operational ECMWF ensembles contribute significantly to ensemble spread and improve probabilistic skill.
- Improved ensemble forecast variances and improved probabilistic skill through a combination of
 - introduction of EDA perturbations
 - reduced amplitude for SV perturbations
 - more active representation of model uncertainties
- Not having precise estimates of initial error covariances hampers diagnostic of the characteristics of (random) model tendency errors
- Diagnostics may need to be improved to distinguish well different representations of model uncertainty.
- Model uncertainty contributes to initial uncertainty whereever a short-range forecast is used as prior information. A consistent representation of model uncertainty in data assimilation and forecast can help to better constrain the formulation of model uncertainty.

Plans

- Compare operational schemes with more basic tendency perturbations. For instance, additive noise, e.g. from scaled tendencies constructed from a tendency archive, (e.g. YOTC data)
- Diagnose tendency differences from different models started from the same initial conditions (resolution, different parameters, different parameterization schemes, ...). What is the nature of the *random component* of the differences?
- Develop improved diagnostics that permit to evaluate better the realism of different tendency perturbations.