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II.  Improving Model Fidelity, Sensitivity and Long Range Forecasting:  
Majda and Gershgorin PNAS 2010, 2011(A),2011(B)
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Harlim and Majda MWR, 2010
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Majda, Harlim book, Camb. U. Press, 2011
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Introduction

� Current operational GCMs poorly represent the variability associated
with tropical convection

� GCM convective parameterizations often fail to capture the highly
intermittent organized structures of the convectively coupled waves

� Superparameterization and CRM approaches are still too
computationally expensive to apply to climate forecast problems

� Stochastic convective parameterization is computationally
inexpensive way to address the issue of missing variability in tropics.



Convectively coupled waves and MJO

Observations Typical GCM

Lin et. al 2006



Introduction

� A promising approach is to use a stochastic lattice to represent
subgrid variability: Majda Khouider 2002, Khouider et al. 2003,
Majda et al. 2008

� The stochastic multicloud model was introduced by Khouider Biello
and Majda in 2010 (hereafter KBM10) in context of paradigm
two-baroclinic modes single column model.

� This stochastic parameterization is based on a Markov chain lattice
model where each lattice site is either occupied by a cloud of a
certain type (congestus, deep or stratiform) or it is a clear sky site.

� The convective elements interact with the large scale environment
and with each other through convectively available potential energy
(CAPE) and middle troposphere dryness.

� Spatial interactions are ignored, and the resulting coarse grained
stochastic process is computationally inexpensive to evolve via
Gillespie algorithm.

� A modified version of KBM10 model is used here to study flows
above the equator without rotation effects.
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Multicloud model



Dynamical Core of the multicloud model
The dynamical core of the model consists of two forced and coupled
shallow-water systems for first two baroclinic modes of potential
temperature and zonal velocity.

Momentum, jst mode, j =
1, 2

∂tuj − ∂xθj = −Cdu0uj −
1

τR
uj

Potential temperature, 1st
mode

∂tθ1 − ∂xu1 = P − Q
0
R,1 − τ−1

D θ1

Potential temperature, 2nd
mode

∂tθ2 −
1

4
∂xu1 = Hc −Hs −Q

0
R,2 − τ−1

D θ2

The precipitation P = Hd + ξsHs + ξcHc allows for the contribution of
deep convective as well as stratiform and congestus rain.

For simplicity we remove congestus rain by letting ξc = 0 and set
parameter ξs so that at RCE 40 percent of rain comes from stratiform
clouds



Stochastic lattice

The number of convective sites is set to 302 for the experiments on the
40 km grid



Transition rates are defined through three atmospheric
qualities with scaling parameters

� Dryness of Atmosphere D = θeb−θem
D0

� Scaled low level CAPE Cl = CAPEl
CAPE0

� Scaled CAPE C = CAPE
CAPE0

(Note that CAPE0 can be viewed as
”activation” energy)



Transition rates and time scales
Creation of congestus clouds requires dry atmosphere and abundance of
low level CAPE. Note the parity of the congestus creation and decay time
scales

Transition Transition Rate Time scale(h)
Formation of congest R01 = 1

τ01
Γ(Cl)Γ(D) τ01=1τgrid

Decay of congestus R10 = 1
τ10

Γ(D) τ10=1τgrid

Conversion of congest to
deep

R12 = 1
τ12

Γ(C )(1− Γ(D)) τ12=1τgrid

Formation of deep R02 = 1
τ02

Γ(C )(1− Γ(D)) τ02=3τgrid

Conversion of deep to strat-
iform

R23 = 1
τ23

τ23=3τgrid

Decay of deep R20 = 1
τ20

(1− Γ(C )) τ20=3τgrid

Decay of stratiform R30 = 1
τ30

τ30=5τgrid

Γ(x) = 1− e−x for x > 0 and 0 otherwise



Intermittent solution of single column simulation
The time series shows intermittent patterns of large and small convective
events. Both small and large convective events follow the congestus to
deep to stratiform pattern.
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Intermittent solution of single column simulation (closeup)
Smaller congestus cloud heavy convective events precondition
atmosphere for large convective events dominated by the direct clear sky
to deep convection transitions
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Walker type circulation simulations (outline)

Paradigm analog of Walker circulation in deterministic GCMs

Walker circulation in stochastic multicloud model with moderate
resolution

Walker circulation in stochastic multicloud model with coarse resolution

Quantitative comparison of the variability



Deterministic SST gradient induced Walker type
circulation (mean)
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Deterministic SST gradient induced Walker type
circulation (deviations from the mean)
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Eastward propagating waves in the suboptimal parameter
regime deterministic simulation
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SST gradient induced Walker type circulation (mean)
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SST gradient induced Walker type circulation (deviations )
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SST gradient induced Walker type circulation (deviations)
Congestus cloud decks are localized to the center region of the warm
pool.
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Precipitation Profiles
Stochastic multicloud model CRM ( Grabowski et. al 2000)
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Structure of a eastward propagating wave born on the
boundary of the warm pool

Both cloud fractions and heating fields follow the congestus to deep to
stratiform pattern. This results in characteristic tilt of the heating field.
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Mean circulation strength and variability of heating fields
for the stochastic and deterministic parameterizations

� Stochastic multicloud model outperforms its deterministic
counterpart, providing higher variability with more realistic
convective structures.

� Stochastic model can be scaled to coarse grid in a manner that
preserves the variability and statistical structure of the coherent
features.

Model grid
(km)

τgrid n max (U,W ) std(Hd)
K/Day

std(Hc)
K/Day

Stochastic 40 1 302 (10m/s, 2cm/s) 2.14 2.83
Stochastic 160 1 1202 (12m/s, 3cm/s) 1.34 1.89
Stochastic 160 1 302 (12m/s, 3cm/s) 1.67 2.41
Stochastic 160 3 302 (12m/s, 4cm/s) 1.80 2.21
Stochastic 160 4 302 (12m/s, 6cm/s) 1.96 2.07
Stochastic 160 5 302 (11m/s, 5cm/s) 2.09 1.80
Stochastic 160 16 302 (10m/s, 3cm/s) 0.49 0.89
Determin. 40 - - (4m/s, 4cm/s) 0.97 0.14
Determin. 160 - - (5m/s, 4cm/s) 0.55 0.14



Free tropospheric moisture equation is identical to KBM10 except for the
addition of moisture convergence term

Free tropospheric moisture ∂tq + ∂
∂x

[(u1 + α̃u2)q + Q̃(u1 + λ̃u2)] =
−P + D

HT

Boundary layer equivalent
potential temperature

∂tθeb =
1

hb

(E − D)

Downdrafts D = m0[1 + µ(Hs − Hc)/Q
0
R,1]

+�mθe

Sea surface evaporation
flux

E/hb = τ−1
e

(θ�
eb
− θeb)

For simulations with spatial SST gradient θ∗
eb

(x) = 5 cos
�

4πx

40000

�
in

central 20 000 km of the domain and -5K outside of the region



Convective heating closures

Congestus heating closure Hc = σc
ᾱαc

Hm

�
CAPE

+
l

Deep heating closure Hd =

�
σd Q̄ + 1

τc (σd ) (a1θeb + a2q −

a0(θ1 + γ2θ2))

�+

Stratiform heating closure
Hs = αs [σsQ̄ + 1

τc (σs )
(a1θeb + a2q −

a0(θ1 + γ2θ2))]+

Maximum energy available for
deep convection

CAPE = ¯CAPE + R(θeb − γ(θ1 +
γ2θ2))

Maximum energy available for
congestus convection

CAPEl = ¯CAPE + R(θeb − γ(θ1 +
γ�

2θ2))

τc(σX ) = σ̄x

σx

τ 0
c



Conclusions

� The stochastic model dramatically improves the variability of
tropical convection compared to the conventional moderate and
coarse resolution paradigm GCM parameterizations.

� This increase in variability comes from intermittent coherent
structures such as synoptic and mesoscale convective systems,
analogs of squall lines and convectively coupled waves seen in nature
whose representation is improved by the stochastic parameterization.

� Furthermore, simulations with sea surface temperature (SST)
gradient yield realistic mean Walker-cell circulation with plausible
high variability.

� An additional feature of the present stochastic parameterization is a
natural scaling of the model from moderate to coarse grids which
preserves the variability and statistical structure of the coherent
features.



Quantifying Uncertainty in Climate 
Change Science: Empirical Information 

Theory, Fluctuation Dissipation 

• A. Majda and B. Gershgorin, Quantifying Uncertainty in Climate Change 
Science through Empirical Information Theory, PNAS 107, p. 14958 (2010)

• A. Majda, R.  Abramov, and B. Gershgorin, High Skill in Low Frequency 
Climate Response through Fluctuation Dissipation Theorems despite 
Structural Instability, PNAS 107, p. 581 (2010)

• A. Majda and B. Gershgorin, Improving Model Fidelity and Sensitivity for 
Complex Systems through Empirical Information Theory, PNAS, in press 
(2011)

• A. Majda and B. Gershgorin,  The Link between Statistical Equilibrium Fidelity 
and Forecasting Skill for Complex Systems with Model Error, PNAS, in press 
(2011)

• A. Majda, B. Gershgorin, and Y. Yuan, Low Frequency Climate Response and 
Fluctuation Dissipation Theorems: Theory and Practice, JAS 67, p. 1186 
(2010)



• How will the mean temperature change if the 
heating from the sun increases?

• How will the variance of the temperature 
respond to the changes of CO2 concentration?

• How will the mean velocity profile in the ocean 
behave if the salinity starts changing?

• How will the mean temperature in April change if 
the heating in January decreases?

Practical questions in 
climate change science



Quantifying Uncertainty in Climate Change 
Science through Empirical Information Theory

Quantifying the uncertainty for the present climate and the predictions of climate 
change in the suite of imperfect Atmosphere Ocean Science (AOS) computer models 
is a central issue in climate change science.
Basic questions:

A   How to measure the skill of a given model in reproducing the present  climate and predicting 
the future climate in an unbiased fashion?

B  How to make the best possible estimate of climate sensitivity to changes in external or 
internal parameters by utilizing the imperfect knowledge available of the present climate?
What are the most dangerous parameters for climate change given uncertain knowledge of the 
present climate?

C How do coarse-grained  measurements of different functionals of the present climate affect 
the assessments in A), B)?
What are the weights which should be assigned to different functionals of the present climate as 
targets to improve the performance of the imperfect AOS models?
Which new functionals of the present climate should be observed in order to improve the 
assessments in A), B)?

Difficulty: Don’t know dynamics for actual climate!



Empirical Information Theory
Jaynes 1957

Majda, Abramov, Grote 2005 AMS

Majda, Wang 2006, Cambridge Press
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A simple example with an intrinsic barrier 
for improving model sensitivity

Perfect model:

In both [10] and [11], the first summation represents the

signal contribution from [6] while the second summation rep-

resents the dispersion contribution. We use these formu-

las in [10], [11] below to demonstrate facets of improving

model fidelity and model sensitivity explicitly. The formu-

las in [3] and [4] can be utilized directly to build multi-

model ensembles with improved fidelity. First, note that

P(πL,π
M
) = −S(πL) − L(πL,π

M
) where L(πL,π

M
) is the

mean log-likelihood function

L(πL,π
M
) =

�
πL log(πM

). [12]

Since log(x) is a strictly concave function, at least formally

L(πL,π
M
) is a strictly concave function of πM

. Now, con-

sider P different models, πM
p , 1 ≤ p ≤ P and the convex

subset of mixture distributions defined by

πM
(�α) =

P�

p=1

αpπ
M
p ,

P�

p=1

αp = 1,αp ≥ 0. [13]

The πM
(α) consists of all conceivable multi-model ensembles.

Since strictly concave functions restricted to finite convex sets

have a unique maximum, let �α∗
be uniquely defined by the

maximum mean log-likelihood

L(πL,π
M
(�α∗

)) = maxL(πL,π
M
(�α)). [14]

Then, from [3], [4], [12], �α∗
defines the weights for the

multi-model ensemble in [13] with the highest model fi-

delity. Further Gaussian approximations of this multi-model

approach are useful here for high dimensional systems. Next,

we apply the above systematic principles to a family of in-

creasingly complex test models.

A simple example with an intrinsic barrier for improving

model sensitivity
A typical situation with model error for complex systems

arises when the true system has additional degrees of free-

dom that are hidden from the family of imperfect models uti-

lized to study this system either through lack of scientific un-

derstanding or the practical lack of computational resolution.

The simplest example with these features is to consider the

true system as given by the two linear stochastic equations

du
dt

= au+ v + F,

dv
dt

= qu+Av + σẆ ,
[15]

where Ẇ is white noise; the system of equation in [15] has a
smooth Gaussian statistical steady state provided that

a+A < 0, aA− q > 0. [16]

Assume that the variable v in [15] is hidden from the model-

ing process where all imperfect models are given by the scalar

stochastic equation

duM

dt
= −γMuM + FM + σMẆM . [17]

The natural requirement γM > 0 is needed for [17] to have a

Gaussian statistical steady state. Now consider the situation

where the model in [17] has been tuned to match the single

time statistics for u in [15] with perfect fidelity by matching

the mean and variance of uM with u; elementary calculations

show this is true for a one parameter family of models pa-

rameterized by γM > 0 provided that FM , σ2
M satisfy the

equilibrium mean and variance equations

FM

γM
= − AF

aA− q
,

σ2
M

2γM
=

σ2

2(a+A)(aA− q)
≡ E. [18]

Thus, the conditions in [18] for FM and σM guarantee perfect

model fidelity for any γM > 0. In many practical situations

such as actual experiments or climate science, it is important

to understand the response of the natural system to external

forcing, δF , and to hope that the response of the imperfect

model captures the features of this response. The natural

system response for [15] occurs by replacing F in [15] by

F + δF while the same experiment in the model for [17] in-
volves replacing FM by FM +δF . For both the natural system

in [15] and the model system in [17], the only change in the

equilibrium response is through the change in mean

δu = − A
aA− q

δF, δuM =
1

γM
δF, [19]

while the variance of u for the perfect model and uM for the

imperfect model stays constant at the same value E deter-

mined through the second equality in [18]. Now assume that

the natural system satisfies the stability conditions in [16]
with A > 0. We claim that no model from [17] even with

perfect fidelity in [18] for any γM > 0 can match the sensi-

tivity of the natural system correctly; this is easy to see from

[19] since for A > 0, sign(δu) = −sign(δF ) but for all models

from [17], sign(δuM ) = sign(δF ) and the perfect and model

sensitivity are always anti-correlated! The formula in [11]
applies exactly to these models with perfect fidelity with

P(πδ,π
M
δ ) =

1

2
E−1

����−
A

aA− q
− 1

γM

����
2

|δF |2. [20]

In this situation with A > 0, the attempt to minimize the

information theoretic model error in the sensitivity through

the general principle in [3] is futile because no finite mini-

mum over γM of [20] is achieved and necessarily γM → ∞
in the approach to this minimum value; in other words, there

is an intrinsic barrier to skill in sensitivity which cannot be

overcome with the imperfect models in [17] even though they

satisfy perfect model fidelity in [18]. In this situation, infor-

mation theory predicts that one needs to enlarge the class of

models beyond [17] by introducing more degrees of freedom

in the model. On the other hand, if the natural system sat-

isfies [16] with A < 0, then using [20] to minimize the lack

of information in the sensitivity in the models which satisfy

perfect fidelity in [18] results in the unique model with

γ∗
M = −A−1

(aA− q), A < 0, [21]

and this model captures both the model fidelity and model

sensitivity to this forcing parameter exactly. It is worth not-

ing that complex valued scalar generalizations of the models

in [17] which satisfy both [18] and [21] simultaneously can

have considerable skill in the mean sensitivity response [22]

and the real time filtering [23] of large dimensional turbulent

dynamical systems despite significant additional model errors.

Sensitivity and model error for linear stochastic PDEs
Many complex systems in nature have significant behavior

over many spatio-temporal scales with subtle sensitivity in

the response to changes in forcing [22, 24, 25]; the ability of

an imperfect model to reproduce this multi-scale behavior is

a central issue as well as the capability of the imperfect model

to mimic the sensitivity of the natural system. The simplest
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In both [10] and [11], the first summation represents the

signal contribution from [6] while the second summation rep-

resents the dispersion contribution. We use these formu-

las in [10], [11] below to demonstrate facets of improving

model fidelity and model sensitivity explicitly. The formu-

las in [3] and [4] can be utilized directly to build multi-

model ensembles with improved fidelity. First, note that

P(πL,π
M
) = −S(πL) − L(πL,π

M
) where L(πL,π

M
) is the

mean log-likelihood function

L(πL,π
M
) =

�
πL log(πM

). [12]

Since log(x) is a strictly concave function, at least formally

L(πL,π
M
) is a strictly concave function of πM

. Now, con-

sider P different models, πM
p , 1 ≤ p ≤ P and the convex

subset of mixture distributions defined by

πM
(�α) =

P�

p=1

αpπ
M
p ,

P�

p=1

αp = 1,αp ≥ 0. [13]

The πM
(α) consists of all conceivable multi-model ensembles.

Since strictly concave functions restricted to finite convex sets

have a unique maximum, let �α∗
be uniquely defined by the

maximum mean log-likelihood

L(πL,π
M
(�α∗

)) = maxL(πL,π
M
(�α)). [14]

Then, from [3], [4], [12], �α∗
defines the weights for the

multi-model ensemble in [13] with the highest model fi-

delity. Further Gaussian approximations of this multi-model

approach are useful here for high dimensional systems. Next,

we apply the above systematic principles to a family of in-

creasingly complex test models.

A simple example with an intrinsic barrier for improving

model sensitivity
A typical situation with model error for complex systems

arises when the true system has additional degrees of free-

dom that are hidden from the family of imperfect models uti-

lized to study this system either through lack of scientific un-

derstanding or the practical lack of computational resolution.

The simplest example with these features is to consider the

true system as given by the two linear stochastic equations

du
dt

= au+ v + F,

dv
dt

= qu+Av + σẆ ,
[15]

where Ẇ is white noise; the system of equation in [15] has a
smooth Gaussian statistical steady state provided that

a+A < 0, aA− q > 0. [16]

Assume that the variable v in [15] is hidden from the model-

ing process where all imperfect models are given by the scalar

stochastic equation

duM

dt
= −γMuM + FM + σMẆM . [17]

The natural requirement γM > 0 is needed for [17] to have a

Gaussian statistical steady state. Now consider the situation

where the model in [17] has been tuned to match the single

time statistics for u in [15] with perfect fidelity by matching

the mean and variance of uM with u; elementary calculations

show this is true for a one parameter family of models pa-

rameterized by γM > 0 provided that FM , σ2
M satisfy the

equilibrium mean and variance equations

FM

γM
= − AF

aA− q
,

σ2
M

2γM
=

σ2

2(a+A)(aA− q)
≡ E. [18]

Thus, the conditions in [18] for FM and σM guarantee perfect

model fidelity for any γM > 0. In many practical situations

such as actual experiments or climate science, it is important

to understand the response of the natural system to external

forcing, δF , and to hope that the response of the imperfect

model captures the features of this response. The natural

system response for [15] occurs by replacing F in [15] by

F + δF while the same experiment in the model for [17] in-
volves replacing FM by FM +δF . For both the natural system

in [15] and the model system in [17], the only change in the

equilibrium response is through the change in mean

δu = − A
aA− q

δF, δuM =
1

γM
δF, [19]

while the variance of u for the perfect model and uM for the

imperfect model stays constant at the same value E deter-

mined through the second equality in [18]. Now assume that

the natural system satisfies the stability conditions in [16]
with A > 0. We claim that no model from [17] even with

perfect fidelity in [18] for any γM > 0 can match the sensi-

tivity of the natural system correctly; this is easy to see from

[19] since for A > 0, sign(δu) = −sign(δF ) but for all models

from [17], sign(δuM ) = sign(δF ) and the perfect and model

sensitivity are always anti-correlated! The formula in [11]
applies exactly to these models with perfect fidelity with

P(πδ,π
M
δ ) =

1

2
E−1

����−
A

aA− q
− 1

γM

����
2

|δF |2. [20]

In this situation with A > 0, the attempt to minimize the

information theoretic model error in the sensitivity through

the general principle in [3] is futile because no finite mini-

mum over γM of [20] is achieved and necessarily γM → ∞
in the approach to this minimum value; in other words, there

is an intrinsic barrier to skill in sensitivity which cannot be

overcome with the imperfect models in [17] even though they

satisfy perfect model fidelity in [18]. In this situation, infor-

mation theory predicts that one needs to enlarge the class of

models beyond [17] by introducing more degrees of freedom

in the model. On the other hand, if the natural system sat-

isfies [16] with A < 0, then using [20] to minimize the lack

of information in the sensitivity in the models which satisfy

perfect fidelity in [18] results in the unique model with

γ∗
M = −A−1

(aA− q), A < 0, [21]

and this model captures both the model fidelity and model

sensitivity to this forcing parameter exactly. It is worth not-

ing that complex valued scalar generalizations of the models

in [17] which satisfy both [18] and [21] simultaneously can

have considerable skill in the mean sensitivity response [22]

and the real time filtering [23] of large dimensional turbulent

dynamical systems despite significant additional model errors.

Sensitivity and model error for linear stochastic PDEs
Many complex systems in nature have significant behavior

over many spatio-temporal scales with subtle sensitivity in

the response to changes in forcing [22, 24, 25]; the ability of

an imperfect model to reproduce this multi-scale behavior is

a central issue as well as the capability of the imperfect model

to mimic the sensitivity of the natural system. The simplest
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smooth Gausssian measure if

In both [10] and [11], the first summation represents the

signal contribution from [6] while the second summation rep-

resents the dispersion contribution. We use these formu-

las in [10], [11] below to demonstrate facets of improving

model fidelity and model sensitivity explicitly. The formu-

las in [3] and [4] can be utilized directly to build multi-

model ensembles with improved fidelity. First, note that

P(πL,π
M
) = −S(πL) − L(πL,π

M
) where L(πL,π

M
) is the

mean log-likelihood function

L(πL,π
M
) =

�
πL log(πM

). [12]

Since log(x) is a strictly concave function, at least formally

L(πL,π
M
) is a strictly concave function of πM

. Now, con-

sider P different models, πM
p , 1 ≤ p ≤ P and the convex

subset of mixture distributions defined by

πM
(�α) =

P�

p=1

αpπ
M
p ,

P�

p=1

αp = 1,αp ≥ 0. [13]

The πM
(α) consists of all conceivable multi-model ensembles.

Since strictly concave functions restricted to finite convex sets

have a unique maximum, let �α∗
be uniquely defined by the

maximum mean log-likelihood

L(πL,π
M
(�α∗

)) = maxL(πL,π
M
(�α)). [14]

Then, from [3], [4], [12], �α∗
defines the weights for the

multi-model ensemble in [13] with the highest model fi-

delity. Further Gaussian approximations of this multi-model

approach are useful here for high dimensional systems. Next,

we apply the above systematic principles to a family of in-

creasingly complex test models.

A simple example with an intrinsic barrier for improving

model sensitivity
A typical situation with model error for complex systems

arises when the true system has additional degrees of free-

dom that are hidden from the family of imperfect models uti-

lized to study this system either through lack of scientific un-

derstanding or the practical lack of computational resolution.

The simplest example with these features is to consider the

true system as given by the two linear stochastic equations

du
dt

= au+ v + F,

dv
dt

= qu+Av + σẆ ,
[15]

where Ẇ is white noise; the system of equation in [15] has a
smooth Gaussian statistical steady state provided that

a+A < 0, aA− q > 0. [16]

Assume that the variable v in [15] is hidden from the model-

ing process where all imperfect models are given by the scalar

stochastic equation

duM

dt
= −γMuM + FM + σMẆM . [17]

The natural requirement γM > 0 is needed for [17] to have a

Gaussian statistical steady state. Now consider the situation

where the model in [17] has been tuned to match the single

time statistics for u in [15] with perfect fidelity by matching

the mean and variance of uM with u; elementary calculations

show this is true for a one parameter family of models pa-

rameterized by γM > 0 provided that FM , σ2
M satisfy the

equilibrium mean and variance equations

FM

γM
= − AF

aA− q
,

σ2
M

2γM
=

σ2

2(a+A)(aA− q)
≡ E. [18]

Thus, the conditions in [18] for FM and σM guarantee perfect

model fidelity for any γM > 0. In many practical situations

such as actual experiments or climate science, it is important

to understand the response of the natural system to external

forcing, δF , and to hope that the response of the imperfect

model captures the features of this response. The natural

system response for [15] occurs by replacing F in [15] by

F + δF while the same experiment in the model for [17] in-
volves replacing FM by FM +δF . For both the natural system

in [15] and the model system in [17], the only change in the

equilibrium response is through the change in mean

δu = − A
aA− q

δF, δuM =
1

γM
δF, [19]

while the variance of u for the perfect model and uM for the

imperfect model stays constant at the same value E deter-

mined through the second equality in [18]. Now assume that

the natural system satisfies the stability conditions in [16]
with A > 0. We claim that no model from [17] even with

perfect fidelity in [18] for any γM > 0 can match the sensi-

tivity of the natural system correctly; this is easy to see from

[19] since for A > 0, sign(δu) = −sign(δF ) but for all models

from [17], sign(δuM ) = sign(δF ) and the perfect and model

sensitivity are always anti-correlated! The formula in [11]
applies exactly to these models with perfect fidelity with

P(πδ,π
M
δ ) =

1

2
E−1

����−
A

aA− q
− 1

γM

����
2

|δF |2. [20]

In this situation with A > 0, the attempt to minimize the

information theoretic model error in the sensitivity through

the general principle in [3] is futile because no finite mini-

mum over γM of [20] is achieved and necessarily γM → ∞
in the approach to this minimum value; in other words, there

is an intrinsic barrier to skill in sensitivity which cannot be

overcome with the imperfect models in [17] even though they

satisfy perfect model fidelity in [18]. In this situation, infor-

mation theory predicts that one needs to enlarge the class of

models beyond [17] by introducing more degrees of freedom

in the model. On the other hand, if the natural system sat-

isfies [16] with A < 0, then using [20] to minimize the lack

of information in the sensitivity in the models which satisfy

perfect fidelity in [18] results in the unique model with

γ∗
M = −A−1

(aA− q), A < 0, [21]

and this model captures both the model fidelity and model

sensitivity to this forcing parameter exactly. It is worth not-

ing that complex valued scalar generalizations of the models

in [17] which satisfy both [18] and [21] simultaneously can

have considerable skill in the mean sensitivity response [22]

and the real time filtering [23] of large dimensional turbulent

dynamical systems despite significant additional model errors.

Sensitivity and model error for linear stochastic PDEs
Many complex systems in nature have significant behavior

over many spatio-temporal scales with subtle sensitivity in

the response to changes in forcing [22, 24, 25]; the ability of

an imperfect model to reproduce this multi-scale behavior is

a central issue as well as the capability of the imperfect model

to mimic the sensitivity of the natural system. The simplest
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Imperfect model:



Climate Fidelity for Imperfect Model
In both [10] and [11], the first summation represents the

signal contribution from [6] while the second summation rep-

resents the dispersion contribution. We use these formu-

las in [10], [11] below to demonstrate facets of improving

model fidelity and model sensitivity explicitly. The formu-

las in [3] and [4] can be utilized directly to build multi-

model ensembles with improved fidelity. First, note that

P(πL,π
M
) = −S(πL) − L(πL,π

M
) where L(πL,π

M
) is the

mean log-likelihood function

L(πL,π
M
) =

�
πL log(πM

). [12]

Since log(x) is a strictly concave function, at least formally

L(πL,π
M
) is a strictly concave function of πM

. Now, con-

sider P different models, πM
p , 1 ≤ p ≤ P and the convex

subset of mixture distributions defined by

πM
(�α) =

P�

p=1

αpπ
M
p ,

P�

p=1

αp = 1,αp ≥ 0. [13]

The πM
(α) consists of all conceivable multi-model ensembles.

Since strictly concave functions restricted to finite convex sets

have a unique maximum, let �α∗
be uniquely defined by the

maximum mean log-likelihood

L(πL,π
M
(�α∗

)) = maxL(πL,π
M
(�α)). [14]

Then, from [3], [4], [12], �α∗
defines the weights for the

multi-model ensemble in [13] with the highest model fi-

delity. Further Gaussian approximations of this multi-model

approach are useful here for high dimensional systems. Next,

we apply the above systematic principles to a family of in-

creasingly complex test models.

A simple example with an intrinsic barrier for improving

model sensitivity
A typical situation with model error for complex systems

arises when the true system has additional degrees of free-

dom that are hidden from the family of imperfect models uti-

lized to study this system either through lack of scientific un-

derstanding or the practical lack of computational resolution.

The simplest example with these features is to consider the

true system as given by the two linear stochastic equations

du
dt

= au+ v + F,

dv
dt

= qu+Av + σẆ ,
[15]

where Ẇ is white noise; the system of equation in [15] has a
smooth Gaussian statistical steady state provided that

a+A < 0, aA− q > 0. [16]

Assume that the variable v in [15] is hidden from the model-

ing process where all imperfect models are given by the scalar

stochastic equation

duM

dt
= −γMuM + FM + σMẆM . [17]

The natural requirement γM > 0 is needed for [17] to have a

Gaussian statistical steady state. Now consider the situation

where the model in [17] has been tuned to match the single

time statistics for u in [15] with perfect fidelity by matching

the mean and variance of uM with u; elementary calculations

show this is true for a one parameter family of models pa-

rameterized by γM > 0 provided that FM , σ2
M satisfy the

equilibrium mean and variance equations

FM

γM
= − AF

aA− q
,

σ2
M

2γM
=

σ2

2(a+A)(aA− q)
≡ E. [18]

Thus, the conditions in [18] for FM and σM guarantee perfect

model fidelity for any γM > 0. In many practical situations

such as actual experiments or climate science, it is important

to understand the response of the natural system to external

forcing, δF , and to hope that the response of the imperfect

model captures the features of this response. The natural

system response for [15] occurs by replacing F in [15] by

F + δF while the same experiment in the model for [17] in-
volves replacing FM by FM +δF . For both the natural system

in [15] and the model system in [17], the only change in the

equilibrium response is through the change in mean

δu = − A
aA− q

δF, δuM =
1

γM
δF, [19]

while the variance of u for the perfect model and uM for the

imperfect model stays constant at the same value E deter-

mined through the second equality in [18]. Now assume that

the natural system satisfies the stability conditions in [16]
with A > 0. We claim that no model from [17] even with

perfect fidelity in [18] for any γM > 0 can match the sensi-

tivity of the natural system correctly; this is easy to see from

[19] since for A > 0, sign(δu) = −sign(δF ) but for all models

from [17], sign(δuM ) = sign(δF ) and the perfect and model

sensitivity are always anti-correlated! The formula in [11]
applies exactly to these models with perfect fidelity with

P(πδ,π
M
δ ) =

1

2
E−1

����−
A

aA− q
− 1

γM

����
2

|δF |2. [20]

In this situation with A > 0, the attempt to minimize the

information theoretic model error in the sensitivity through

the general principle in [3] is futile because no finite mini-

mum over γM of [20] is achieved and necessarily γM → ∞
in the approach to this minimum value; in other words, there

is an intrinsic barrier to skill in sensitivity which cannot be

overcome with the imperfect models in [17] even though they

satisfy perfect model fidelity in [18]. In this situation, infor-

mation theory predicts that one needs to enlarge the class of

models beyond [17] by introducing more degrees of freedom

in the model. On the other hand, if the natural system sat-

isfies [16] with A < 0, then using [20] to minimize the lack

of information in the sensitivity in the models which satisfy

perfect fidelity in [18] results in the unique model with

γ∗
M = −A−1

(aA− q), A < 0, [21]

and this model captures both the model fidelity and model

sensitivity to this forcing parameter exactly. It is worth not-

ing that complex valued scalar generalizations of the models

in [17] which satisfy both [18] and [21] simultaneously can

have considerable skill in the mean sensitivity response [22]

and the real time filtering [23] of large dimensional turbulent

dynamical systems despite significant additional model errors.

Sensitivity and model error for linear stochastic PDEs
Many complex systems in nature have significant behavior

over many spatio-temporal scales with subtle sensitivity in

the response to changes in forcing [22, 24, 25]; the ability of

an imperfect model to reproduce this multi-scale behavior is

a central issue as well as the capability of the imperfect model

to mimic the sensitivity of the natural system. The simplest
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Response to change in forcing:

In both [10] and [11], the first summation represents the

signal contribution from [6] while the second summation rep-

resents the dispersion contribution. We use these formu-

las in [10], [11] below to demonstrate facets of improving

model fidelity and model sensitivity explicitly. The formu-

las in [3] and [4] can be utilized directly to build multi-

model ensembles with improved fidelity. First, note that

P(πL,π
M
) = −S(πL) − L(πL,π

M
) where L(πL,π

M
) is the

mean log-likelihood function

L(πL,π
M
) =

�
πL log(πM

). [12]

Since log(x) is a strictly concave function, at least formally

L(πL,π
M
) is a strictly concave function of πM

. Now, con-

sider P different models, πM
p , 1 ≤ p ≤ P and the convex

subset of mixture distributions defined by

πM
(�α) =

P�

p=1

αpπ
M
p ,

P�

p=1

αp = 1,αp ≥ 0. [13]

The πM
(α) consists of all conceivable multi-model ensembles.

Since strictly concave functions restricted to finite convex sets

have a unique maximum, let �α∗
be uniquely defined by the

maximum mean log-likelihood

L(πL,π
M
(�α∗

)) = maxL(πL,π
M
(�α)). [14]

Then, from [3], [4], [12], �α∗
defines the weights for the

multi-model ensemble in [13] with the highest model fi-

delity. Further Gaussian approximations of this multi-model

approach are useful here for high dimensional systems. Next,

we apply the above systematic principles to a family of in-

creasingly complex test models.

A simple example with an intrinsic barrier for improving

model sensitivity
A typical situation with model error for complex systems

arises when the true system has additional degrees of free-

dom that are hidden from the family of imperfect models uti-

lized to study this system either through lack of scientific un-

derstanding or the practical lack of computational resolution.

The simplest example with these features is to consider the

true system as given by the two linear stochastic equations

du
dt

= au+ v + F,

dv
dt

= qu+Av + σẆ ,
[15]

where Ẇ is white noise; the system of equation in [15] has a
smooth Gaussian statistical steady state provided that

a+A < 0, aA− q > 0. [16]

Assume that the variable v in [15] is hidden from the model-

ing process where all imperfect models are given by the scalar

stochastic equation

duM

dt
= −γMuM + FM + σMẆM . [17]

The natural requirement γM > 0 is needed for [17] to have a

Gaussian statistical steady state. Now consider the situation

where the model in [17] has been tuned to match the single

time statistics for u in [15] with perfect fidelity by matching

the mean and variance of uM with u; elementary calculations

show this is true for a one parameter family of models pa-

rameterized by γM > 0 provided that FM , σ2
M satisfy the

equilibrium mean and variance equations

FM

γM
= − AF

aA− q
,

σ2
M

2γM
=

σ2

2(a+A)(aA− q)
≡ E. [18]

Thus, the conditions in [18] for FM and σM guarantee perfect

model fidelity for any γM > 0. In many practical situations

such as actual experiments or climate science, it is important

to understand the response of the natural system to external

forcing, δF , and to hope that the response of the imperfect

model captures the features of this response. The natural

system response for [15] occurs by replacing F in [15] by

F + δF while the same experiment in the model for [17] in-
volves replacing FM by FM +δF . For both the natural system

in [15] and the model system in [17], the only change in the

equilibrium response is through the change in mean

δu = − A
aA− q

δF, δuM =
1

γM
δF, [19]

while the variance of u for the perfect model and uM for the

imperfect model stays constant at the same value E deter-

mined through the second equality in [18]. Now assume that

the natural system satisfies the stability conditions in [16]
with A > 0. We claim that no model from [17] even with

perfect fidelity in [18] for any γM > 0 can match the sensi-

tivity of the natural system correctly; this is easy to see from

[19] since for A > 0, sign(δu) = −sign(δF ) but for all models

from [17], sign(δuM ) = sign(δF ) and the perfect and model

sensitivity are always anti-correlated! The formula in [11]
applies exactly to these models with perfect fidelity with

P(πδ,π
M
δ ) =
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|δF |2. [20]

In this situation with A > 0, the attempt to minimize the

information theoretic model error in the sensitivity through

the general principle in [3] is futile because no finite mini-

mum over γM of [20] is achieved and necessarily γM → ∞
in the approach to this minimum value; in other words, there

is an intrinsic barrier to skill in sensitivity which cannot be

overcome with the imperfect models in [17] even though they

satisfy perfect model fidelity in [18]. In this situation, infor-

mation theory predicts that one needs to enlarge the class of

models beyond [17] by introducing more degrees of freedom

in the model. On the other hand, if the natural system sat-

isfies [16] with A < 0, then using [20] to minimize the lack

of information in the sensitivity in the models which satisfy

perfect fidelity in [18] results in the unique model with

γ∗
M = −A−1

(aA− q), A < 0, [21]

and this model captures both the model fidelity and model

sensitivity to this forcing parameter exactly. It is worth not-

ing that complex valued scalar generalizations of the models

in [17] which satisfy both [18] and [21] simultaneously can

have considerable skill in the mean sensitivity response [22]

and the real time filtering [23] of large dimensional turbulent

dynamical systems despite significant additional model errors.

Sensitivity and model error for linear stochastic PDEs
Many complex systems in nature have significant behavior

over many spatio-temporal scales with subtle sensitivity in

the response to changes in forcing [22, 24, 25]; the ability of

an imperfect model to reproduce this multi-scale behavior is

a central issue as well as the capability of the imperfect model

to mimic the sensitivity of the natural system. The simplest
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The natural requirement γM > 0 is needed for [17] to have a

Gaussian statistical steady state. Now consider the situation

where the model in [17] has been tuned to match the single

time statistics for u in [15] with perfect fidelity by matching

the mean and variance of uM with u; elementary calculations

show this is true for a one parameter family of models pa-

rameterized by γM > 0 provided that FM , σ2
M satisfy the

equilibrium mean and variance equations

FM

γM
= − AF

aA− q
,

σ2
M

2γM
=

σ2

2(a+A)(aA− q)
≡ E. [18]

Thus, the conditions in [18] for FM and σM guarantee perfect

model fidelity for any γM > 0. In many practical situations

such as actual experiments or climate science, it is important

to understand the response of the natural system to external

forcing, δF , and to hope that the response of the imperfect

model captures the features of this response. The natural

system response for [15] occurs by replacing F in [15] by

F + δF while the same experiment in the model for [17] in-
volves replacing FM by FM +δF . For both the natural system

in [15] and the model system in [17], the only change in the

equilibrium response is through the change in mean

δu = − A
aA− q

δF, δuM =
1

γM
δF, [19]

while the variance of u for the perfect model and uM for the

imperfect model stays constant at the same value E deter-

mined through the second equality in [18]. Now assume that

the natural system satisfies the stability conditions in [16]
with A > 0. We claim that no model from [17] even with

perfect fidelity in [18] for any γM > 0 can match the sensi-

tivity of the natural system correctly; this is easy to see from

[19] since for A > 0, sign(δu) = −sign(δF ) but for all models

from [17], sign(δuM ) = sign(δF ) and the perfect and model

sensitivity are always anti-correlated! The formula in [11]
applies exactly to these models with perfect fidelity with

P(πδ,π
M
δ ) =

1

2
E−1

����−
A

aA− q
− 1

γM

����
2

|δF |2. [20]

In this situation with A > 0, the attempt to minimize the

information theoretic model error in the sensitivity through

the general principle in [3] is futile because no finite mini-

mum over γM of [20] is achieved and necessarily γM → ∞
in the approach to this minimum value; in other words, there

is an intrinsic barrier to skill in sensitivity which cannot be

overcome with the imperfect models in [17] even though they

satisfy perfect model fidelity in [18]. In this situation, infor-

mation theory predicts that one needs to enlarge the class of

models beyond [17] by introducing more degrees of freedom

in the model. On the other hand, if the natural system sat-

isfies [16] with A < 0, then using [20] to minimize the lack

of information in the sensitivity in the models which satisfy

perfect fidelity in [18] results in the unique model with

γ∗
M = −A−1

(aA− q), A < 0, [21]

and this model captures both the model fidelity and model

sensitivity to this forcing parameter exactly. It is worth not-

ing that complex valued scalar generalizations of the models

in [17] which satisfy both [18] and [21] simultaneously can

have considerable skill in the mean sensitivity response [22]

and the real time filtering [23] of large dimensional turbulent

dynamical systems despite significant additional model errors.

Sensitivity and model error for linear stochastic PDEs
Many complex systems in nature have significant behavior

over many spatio-temporal scales with subtle sensitivity in

the response to changes in forcing [22, 24, 25]; the ability of

an imperfect model to reproduce this multi-scale behavior is

a central issue as well as the capability of the imperfect model

to mimic the sensitivity of the natural system. The simplest

Footline Author PNAS Issue Date Volume Issue Number 3

In both [10] and [11], the first summation represents the

signal contribution from [6] while the second summation rep-

resents the dispersion contribution. We use these formu-

las in [10], [11] below to demonstrate facets of improving

model fidelity and model sensitivity explicitly. The formu-

las in [3] and [4] can be utilized directly to build multi-

model ensembles with improved fidelity. First, note that

P(πL,π
M
) = −S(πL) − L(πL,π

M
) where L(πL,π

M
) is the

mean log-likelihood function

L(πL,π
M
) =

�
πL log(πM

). [12]

Since log(x) is a strictly concave function, at least formally

L(πL,π
M
) is a strictly concave function of πM

. Now, con-

sider P different models, πM
p , 1 ≤ p ≤ P and the convex

subset of mixture distributions defined by

πM
(�α) =

P�

p=1

αpπ
M
p ,

P�

p=1

αp = 1,αp ≥ 0. [13]

The πM
(α) consists of all conceivable multi-model ensembles.

Since strictly concave functions restricted to finite convex sets

have a unique maximum, let �α∗
be uniquely defined by the

maximum mean log-likelihood

L(πL,π
M
(�α∗

)) = maxL(πL,π
M
(�α)). [14]

Then, from [3], [4], [12], �α∗
defines the weights for the

multi-model ensemble in [13] with the highest model fi-

delity. Further Gaussian approximations of this multi-model

approach are useful here for high dimensional systems. Next,

we apply the above systematic principles to a family of in-

creasingly complex test models.

A simple example with an intrinsic barrier for improving

model sensitivity
A typical situation with model error for complex systems

arises when the true system has additional degrees of free-

dom that are hidden from the family of imperfect models uti-

lized to study this system either through lack of scientific un-

derstanding or the practical lack of computational resolution.

The simplest example with these features is to consider the

true system as given by the two linear stochastic equations

du
dt

= au+ v + F,

dv
dt

= qu+Av + σẆ ,
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the response to changes in forcing [22, 24, 25]; the ability of

an imperfect model to reproduce this multi-scale behavior is

a central issue as well as the capability of the imperfect model

to mimic the sensitivity of the natural system. The simplest
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Stochastic Model Parameterization

spectrum, and intermittent non-Gaussian statistics like trac-
ers in the atmosphere [26] as the perfect models to provide
a highly nontrivial demonstration of improving the fidelity of
imperfect models through stochastic forcing.

The perfect models have a zonal (east-west) mean jet,
U(t), a family of planetary and synoptic scale waves with
north-south velocity v(x, t) with x, a spatially periodic vari-
able representing a fixed midlatitude circle in the east-west
direction, and tracer gas T (x, t) with a north-south environ-
mental mean gradient α and molecular diffusivity κ. The
dynamical equations for these variables are

A)
dU
dt

= −γU + f(t) + σẆ ,

B)
∂v
∂t

= P

�
∂
∂x

�
v + σv(x)Ẇv + fv(x, t),

C)
∂T
∂t

+ U(t)
∂T
∂x

= −αv(x, t) + κ
∂2T
∂x2

− dTT,

[29]

The functions f(t), fv(x, t) are known time periodic functions
with period of one year reflecting the changing external forcing
of the seasonal cycle, while Ẇ , Ẇv represent random white
noise fluctuations in forcing. The equation in [29] for the
turbulent planetary waves is solved by Fourier series with in-
dependent scalar complex variable versions of the equation in
[29] A) for each different wave number k; in Fourier space
the operator P̂k has the form P̂k = −γk + iωk with frequency
ωk = βk

k2+Fs
corresponding to the dispersion relation of baro-

clinic Rossby waves and dissipation γk = ν(k2 + Fs) where
β is the north-south gradient of rotation, Fs is the stratifica-
tion, and ν is a damping coefficient; the white noise forcing for
[29] B) is chosen to vary with each spatial wave number k to
generate an equipartition energy spectrum for planetary scale
wave numbers 1 ≤ |k| ≤ 10 and a |k|−5/3 turbulent cascade
spectrum for 11 ≤ |k| ≤ 52. The zonal jet U(t) = Ū(t)+U �(t),
where Ū(t) is the climatological periodic mean with γ, and σ
chosen so that this jet is strongly eastward while the random
fluctuations, U �(t), have a standard deviation consistent with
such eastward dynamical behavior. Here, the impefect mod-
els are Gaussian with the same dynamics for the zonal jet
and Rossby waves from [29] A), B) but the tracer equation
is given by

∂TM

∂t
+ ŪM (t)

∂TM

∂x
[30]

= −αvM (x, t) + (κ+ κM )
∂2TM

∂x2
− dTTM + σT Ẇ (x, t).

In [30], κM is an eddy diffusivity coefficient, often utilized
for parameterization of unresolved turbulence in climate sci-
ence [26–29] while Ẇ (x, t) denotes space-time white noise forc-
ing with variance parameter σT . In the white noise limit of

[29], the exact eddy diffusivity for the tracer, κ∗
M = σ2

2γ2 , is

valid in the limit [3, 18] and here κM = θκ∗
M is varied with

0 ≤ θ ≤ 1. The standard parameterizations in climate sci-
ence are deterministic and we utilize the models in [30] with
σT ≡ 0 as typical deterministic imperfect models to improve
by stochastic forcing [19] for σT �= 0. Here, we are interested
in model error for time periodic statistical steady states for
the tracer, coarse-grained to a given number of spatial Fourier
modes; the larger the number of spatial Fourier modes, the
larger the demands we place on the imperfect model to rep-
resent smaller scale regional behavior accurately. Thus, the

natural information metric we utilize here for model fidelity
consists of [6] utilized spatially but averaged over the sea-
sonal cycle of one year. Figure 2 shows several facets of the
systematic information theoretic improvement over the deter-
ministic models of the best imperfect models for the tracer
with optimal stochastic forcing according to [6]. First, the
optimal value of σT increases as the deterministic eddy diffu-
sivity increases from zero to κ∗

M and larger σT is needed for
the refined coarse-grainings spatially; secondly, there is a sig-
nificant gain of information by utilizing the optimal stochastic
imperfect models compared with the deterministic ones and
this information gain is necessarily in the dispersion of the
tracer. Finally, the optimal value with the smallest informa-
tion discrepancy occurs for κM = 0.1κ∗

M and this is especially
significant for large scale coarse-grainings like k = 1, 2, 3 but
insignificant for finer scale coarse-grainings like k = 5, 8, 12
as long as κM exceeds 0.1κ∗

M since these curves are very
flat. One might anticipate that the sensitivity of the imper-
fect models is improved by utilizing the optimal stochastic
forcing. To see if this is the case, the mean jet, Ū(t), was
perturbed by δŪ = 0.1Ū and the new perfect and imper-
fect model climates were calculated. With the deterministic
eddy parameter, κ∗

M , the information theoretic model discrep-
ancy in the perturbed climate is P = 27.6, 1811, 42401 with
coarse-grainings k = 1, 5, 12, respectively, while the imperfect
model with the same eddy diffusivity κ∗

M and optimal ran-
dom forcing, σT , had the information theoretic discrepancy
P = 0.08, 2.02, 6.54 with coarse-grainings k = 1, 5, 12, respec-
tively. Thus, there was a significant improvement in imper-
fect model sensitivity through the optimal stochastic forcing
which guarateed improved climate fidelity. Note from Fig. 2
that increasing the demand of higher spatial resolution to im-
prove regional model error requires a higher optimal value of
stochastic forcing to decrease the dispersion model error.

Concluding discussion

Here, a systematic information theoretic framework has been
developed to improve model fidelity and sensitivity for com-
plex systems including perturbation formulas and multi-model
ensembles which can be utilized to improve both aspects of
model error simultaneously. A suite of models were utilized
to demonstrate facets of the proposed framework. These re-
sults include simple examples of imperfect models with perfect
equilibrium statistical fidelity where there are intrinsic natu-
ral barriers to improving imperfect model sensitivity. Linear
stochastic models with multiple spatio-temporal scales have
been utilized to demonstrate the information theoretic ap-
proach to equilibrium sensitivity, the role of increasing spatial
resolution in the information metric for model error, and the
ability of imperfect models to capture this sensitivity. Finally,
an instructive statistically nonlinear model with many degrees
of freedom, mimicking the observed non-Gaussian statistical
behavior of tracers in the atmosphere, with corresponding
imperfect eddy diffusivity parameterization models are uti-
lized here. They demonstrate the important role of additional
stochastic forcing of imperfect models in order to systemat-
ically improve the information theoretic measures of fidelity
and sensitivity developed here.
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spectrum, and intermittent non-Gaussian statistics like trac-
ers in the atmosphere [26] as the perfect models to provide
a highly nontrivial demonstration of improving the fidelity of
imperfect models through stochastic forcing.

The perfect models have a zonal (east-west) mean jet,
U(t), a family of planetary and synoptic scale waves with
north-south velocity v(x, t) with x, a spatially periodic vari-
able representing a fixed midlatitude circle in the east-west
direction, and tracer gas T (x, t) with a north-south environ-
mental mean gradient α and molecular diffusivity κ. The
dynamical equations for these variables are
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The functions f(t), fv(x, t) are known time periodic functions
with period of one year reflecting the changing external forcing
of the seasonal cycle, while Ẇ , Ẇv represent random white
noise fluctuations in forcing. The equation in [29] for the
turbulent planetary waves is solved by Fourier series with in-
dependent scalar complex variable versions of the equation in
[29] A) for each different wave number k; in Fourier space
the operator P̂k has the form P̂k = −γk + iωk with frequency
ωk = βk

k2+Fs
corresponding to the dispersion relation of baro-

clinic Rossby waves and dissipation γk = ν(k2 + Fs) where
β is the north-south gradient of rotation, Fs is the stratifica-
tion, and ν is a damping coefficient; the white noise forcing for
[29] B) is chosen to vary with each spatial wave number k to
generate an equipartition energy spectrum for planetary scale
wave numbers 1 ≤ |k| ≤ 10 and a |k|−5/3 turbulent cascade
spectrum for 11 ≤ |k| ≤ 52. The zonal jet U(t) = Ū(t)+U �(t),
where Ū(t) is the climatological periodic mean with γ, and σ
chosen so that this jet is strongly eastward while the random
fluctuations, U �(t), have a standard deviation consistent with
such eastward dynamical behavior. Here, the impefect mod-
els are Gaussian with the same dynamics for the zonal jet
and Rossby waves from [29] A), B) but the tracer equation
is given by

∂TM

∂t
+ ŪM (t)

∂TM

∂x
[30]

= −αvM (x, t) + (κ+ κM )
∂2TM

∂x2
− dTTM + σT Ẇ (x, t).

In [30], κM is an eddy diffusivity coefficient, often utilized
for parameterization of unresolved turbulence in climate sci-
ence [26–29] while Ẇ (x, t) denotes space-time white noise forc-
ing with variance parameter σT . In the white noise limit of

[29], the exact eddy diffusivity for the tracer, κ∗
M = σ2

2γ2 , is

valid in the limit [3, 18] and here κM = θκ∗
M is varied with

0 ≤ θ ≤ 1. The standard parameterizations in climate sci-
ence are deterministic and we utilize the models in [30] with
σT ≡ 0 as typical deterministic imperfect models to improve
by stochastic forcing [19] for σT �= 0. Here, we are interested
in model error for time periodic statistical steady states for
the tracer, coarse-grained to a given number of spatial Fourier
modes; the larger the number of spatial Fourier modes, the
larger the demands we place on the imperfect model to rep-
resent smaller scale regional behavior accurately. Thus, the

natural information metric we utilize here for model fidelity
consists of [6] utilized spatially but averaged over the sea-
sonal cycle of one year. Figure 2 shows several facets of the
systematic information theoretic improvement over the deter-
ministic models of the best imperfect models for the tracer
with optimal stochastic forcing according to [6]. First, the
optimal value of σT increases as the deterministic eddy diffu-
sivity increases from zero to κ∗

M and larger σT is needed for
the refined coarse-grainings spatially; secondly, there is a sig-
nificant gain of information by utilizing the optimal stochastic
imperfect models compared with the deterministic ones and
this information gain is necessarily in the dispersion of the
tracer. Finally, the optimal value with the smallest informa-
tion discrepancy occurs for κM = 0.1κ∗

M and this is especially
significant for large scale coarse-grainings like k = 1, 2, 3 but
insignificant for finer scale coarse-grainings like k = 5, 8, 12
as long as κM exceeds 0.1κ∗

M since these curves are very
flat. One might anticipate that the sensitivity of the imper-
fect models is improved by utilizing the optimal stochastic
forcing. To see if this is the case, the mean jet, Ū(t), was
perturbed by δŪ = 0.1Ū and the new perfect and imper-
fect model climates were calculated. With the deterministic
eddy parameter, κ∗

M , the information theoretic model discrep-
ancy in the perturbed climate is P = 27.6, 1811, 42401 with
coarse-grainings k = 1, 5, 12, respectively, while the imperfect
model with the same eddy diffusivity κ∗

M and optimal ran-
dom forcing, σT , had the information theoretic discrepancy
P = 0.08, 2.02, 6.54 with coarse-grainings k = 1, 5, 12, respec-
tively. Thus, there was a significant improvement in imper-
fect model sensitivity through the optimal stochastic forcing
which guarateed improved climate fidelity. Note from Fig. 2
that increasing the demand of higher spatial resolution to im-
prove regional model error requires a higher optimal value of
stochastic forcing to decrease the dispersion model error.

Concluding discussion

Here, a systematic information theoretic framework has been
developed to improve model fidelity and sensitivity for com-
plex systems including perturbation formulas and multi-model
ensembles which can be utilized to improve both aspects of
model error simultaneously. A suite of models were utilized
to demonstrate facets of the proposed framework. These re-
sults include simple examples of imperfect models with perfect
equilibrium statistical fidelity where there are intrinsic natu-
ral barriers to improving imperfect model sensitivity. Linear
stochastic models with multiple spatio-temporal scales have
been utilized to demonstrate the information theoretic ap-
proach to equilibrium sensitivity, the role of increasing spatial
resolution in the information metric for model error, and the
ability of imperfect models to capture this sensitivity. Finally,
an instructive statistically nonlinear model with many degrees
of freedom, mimicking the observed non-Gaussian statistical
behavior of tracers in the atmosphere, with corresponding
imperfect eddy diffusivity parameterization models are uti-
lized here. They demonstrate the important role of additional
stochastic forcing of imperfect models in order to systemat-
ically improve the information theoretic measures of fidelity
and sensitivity developed here.
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spectrum, and intermittent non-Gaussian statistics like trac-
ers in the atmosphere [26] as the perfect models to provide
a highly nontrivial demonstration of improving the fidelity of
imperfect models through stochastic forcing.

The perfect models have a zonal (east-west) mean jet,
U(t), a family of planetary and synoptic scale waves with
north-south velocity v(x, t) with x, a spatially periodic vari-
able representing a fixed midlatitude circle in the east-west
direction, and tracer gas T (x, t) with a north-south environ-
mental mean gradient α and molecular diffusivity κ. The
dynamical equations for these variables are
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The functions f(t), fv(x, t) are known time periodic functions
with period of one year reflecting the changing external forcing
of the seasonal cycle, while Ẇ , Ẇv represent random white
noise fluctuations in forcing. The equation in [29] for the
turbulent planetary waves is solved by Fourier series with in-
dependent scalar complex variable versions of the equation in
[29] A) for each different wave number k; in Fourier space
the operator P̂k has the form P̂k = −γk + iωk with frequency
ωk = βk
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corresponding to the dispersion relation of baro-

clinic Rossby waves and dissipation γk = ν(k2 + Fs) where
β is the north-south gradient of rotation, Fs is the stratifica-
tion, and ν is a damping coefficient; the white noise forcing for
[29] B) is chosen to vary with each spatial wave number k to
generate an equipartition energy spectrum for planetary scale
wave numbers 1 ≤ |k| ≤ 10 and a |k|−5/3 turbulent cascade
spectrum for 11 ≤ |k| ≤ 52. The zonal jet U(t) = Ū(t)+U �(t),
where Ū(t) is the climatological periodic mean with γ, and σ
chosen so that this jet is strongly eastward while the random
fluctuations, U �(t), have a standard deviation consistent with
such eastward dynamical behavior. Here, the impefect mod-
els are Gaussian with the same dynamics for the zonal jet
and Rossby waves from [29] A), B) but the tracer equation
is given by

∂TM

∂t
+ ŪM (t)
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= −αvM (x, t) + (κ+ κM )
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− dTTM + σT Ẇ (x, t).

In [30], κM is an eddy diffusivity coefficient, often utilized
for parameterization of unresolved turbulence in climate sci-
ence [26–29] while Ẇ (x, t) denotes space-time white noise forc-
ing with variance parameter σT . In the white noise limit of

[29], the exact eddy diffusivity for the tracer, κ∗
M = σ2

2γ2 , is

valid in the limit [3, 18] and here κM = θκ∗
M is varied with

0 ≤ θ ≤ 1. The standard parameterizations in climate sci-
ence are deterministic and we utilize the models in [30] with
σT ≡ 0 as typical deterministic imperfect models to improve
by stochastic forcing [19] for σT �= 0. Here, we are interested
in model error for time periodic statistical steady states for
the tracer, coarse-grained to a given number of spatial Fourier
modes; the larger the number of spatial Fourier modes, the
larger the demands we place on the imperfect model to rep-
resent smaller scale regional behavior accurately. Thus, the

natural information metric we utilize here for model fidelity
consists of [6] utilized spatially but averaged over the sea-
sonal cycle of one year. Figure 2 shows several facets of the
systematic information theoretic improvement over the deter-
ministic models of the best imperfect models for the tracer
with optimal stochastic forcing according to [6]. First, the
optimal value of σT increases as the deterministic eddy diffu-
sivity increases from zero to κ∗

M and larger σT is needed for
the refined coarse-grainings spatially; secondly, there is a sig-
nificant gain of information by utilizing the optimal stochastic
imperfect models compared with the deterministic ones and
this information gain is necessarily in the dispersion of the
tracer. Finally, the optimal value with the smallest informa-
tion discrepancy occurs for κM = 0.1κ∗

M and this is especially
significant for large scale coarse-grainings like k = 1, 2, 3 but
insignificant for finer scale coarse-grainings like k = 5, 8, 12
as long as κM exceeds 0.1κ∗

M since these curves are very
flat. One might anticipate that the sensitivity of the imper-
fect models is improved by utilizing the optimal stochastic
forcing. To see if this is the case, the mean jet, Ū(t), was
perturbed by δŪ = 0.1Ū and the new perfect and imper-
fect model climates were calculated. With the deterministic
eddy parameter, κ∗

M , the information theoretic model discrep-
ancy in the perturbed climate is P = 27.6, 1811, 42401 with
coarse-grainings k = 1, 5, 12, respectively, while the imperfect
model with the same eddy diffusivity κ∗

M and optimal ran-
dom forcing, σT , had the information theoretic discrepancy
P = 0.08, 2.02, 6.54 with coarse-grainings k = 1, 5, 12, respec-
tively. Thus, there was a significant improvement in imper-
fect model sensitivity through the optimal stochastic forcing
which guarateed improved climate fidelity. Note from Fig. 2
that increasing the demand of higher spatial resolution to im-
prove regional model error requires a higher optimal value of
stochastic forcing to decrease the dispersion model error.

Concluding discussion

Here, a systematic information theoretic framework has been
developed to improve model fidelity and sensitivity for com-
plex systems including perturbation formulas and multi-model
ensembles which can be utilized to improve both aspects of
model error simultaneously. A suite of models were utilized
to demonstrate facets of the proposed framework. These re-
sults include simple examples of imperfect models with perfect
equilibrium statistical fidelity where there are intrinsic natu-
ral barriers to improving imperfect model sensitivity. Linear
stochastic models with multiple spatio-temporal scales have
been utilized to demonstrate the information theoretic ap-
proach to equilibrium sensitivity, the role of increasing spatial
resolution in the information metric for model error, and the
ability of imperfect models to capture this sensitivity. Finally,
an instructive statistically nonlinear model with many degrees
of freedom, mimicking the observed non-Gaussian statistical
behavior of tracers in the atmosphere, with corresponding
imperfect eddy diffusivity parameterization models are uti-
lized here. They demonstrate the important role of additional
stochastic forcing of imperfect models in order to systemat-
ically improve the information theoretic measures of fidelity
and sensitivity developed here.

ACKNOWLEDGMENTS. This research of A.J.M. is partially supported by National
Science Foundation grant DMS-0456713 and the office of Naval Research grants 25-
74200-F6607 and N00014-11-1-0306. B.G is supported as a postdoctoral fellow on
the first grant.

Footline Author PNAS Issue Date Volume Issue Number 5

spectrum, and intermittent non-Gaussian statistics like trac-
ers in the atmosphere [26] as the perfect models to provide
a highly nontrivial demonstration of improving the fidelity of
imperfect models through stochastic forcing.

The perfect models have a zonal (east-west) mean jet,
U(t), a family of planetary and synoptic scale waves with
north-south velocity v(x, t) with x, a spatially periodic vari-
able representing a fixed midlatitude circle in the east-west
direction, and tracer gas T (x, t) with a north-south environ-
mental mean gradient α and molecular diffusivity κ. The
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The functions f(t), fv(x, t) are known time periodic functions
with period of one year reflecting the changing external forcing
of the seasonal cycle, while Ẇ , Ẇv represent random white
noise fluctuations in forcing. The equation in [29] for the
turbulent planetary waves is solved by Fourier series with in-
dependent scalar complex variable versions of the equation in
[29] A) for each different wave number k; in Fourier space
the operator P̂k has the form P̂k = −γk + iωk with frequency
ωk = βk
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corresponding to the dispersion relation of baro-

clinic Rossby waves and dissipation γk = ν(k2 + Fs) where
β is the north-south gradient of rotation, Fs is the stratifica-
tion, and ν is a damping coefficient; the white noise forcing for
[29] B) is chosen to vary with each spatial wave number k to
generate an equipartition energy spectrum for planetary scale
wave numbers 1 ≤ |k| ≤ 10 and a |k|−5/3 turbulent cascade
spectrum for 11 ≤ |k| ≤ 52. The zonal jet U(t) = Ū(t)+U �(t),
where Ū(t) is the climatological periodic mean with γ, and σ
chosen so that this jet is strongly eastward while the random
fluctuations, U �(t), have a standard deviation consistent with
such eastward dynamical behavior. Here, the impefect mod-
els are Gaussian with the same dynamics for the zonal jet
and Rossby waves from [29] A), B) but the tracer equation
is given by
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= −αvM (x, t) + (κ+ κM )
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In [30], κM is an eddy diffusivity coefficient, often utilized
for parameterization of unresolved turbulence in climate sci-
ence [26–29] while Ẇ (x, t) denotes space-time white noise forc-
ing with variance parameter σT . In the white noise limit of

[29], the exact eddy diffusivity for the tracer, κ∗
M = σ2

2γ2 , is

valid in the limit [3, 18] and here κM = θκ∗
M is varied with

0 ≤ θ ≤ 1. The standard parameterizations in climate sci-
ence are deterministic and we utilize the models in [30] with
σT ≡ 0 as typical deterministic imperfect models to improve
by stochastic forcing [19] for σT �= 0. Here, we are interested
in model error for time periodic statistical steady states for
the tracer, coarse-grained to a given number of spatial Fourier
modes; the larger the number of spatial Fourier modes, the
larger the demands we place on the imperfect model to rep-
resent smaller scale regional behavior accurately. Thus, the

natural information metric we utilize here for model fidelity
consists of [6] utilized spatially but averaged over the sea-
sonal cycle of one year. Figure 2 shows several facets of the
systematic information theoretic improvement over the deter-
ministic models of the best imperfect models for the tracer
with optimal stochastic forcing according to [6]. First, the
optimal value of σT increases as the deterministic eddy diffu-
sivity increases from zero to κ∗

M and larger σT is needed for
the refined coarse-grainings spatially; secondly, there is a sig-
nificant gain of information by utilizing the optimal stochastic
imperfect models compared with the deterministic ones and
this information gain is necessarily in the dispersion of the
tracer. Finally, the optimal value with the smallest informa-
tion discrepancy occurs for κM = 0.1κ∗

M and this is especially
significant for large scale coarse-grainings like k = 1, 2, 3 but
insignificant for finer scale coarse-grainings like k = 5, 8, 12
as long as κM exceeds 0.1κ∗

M since these curves are very
flat. One might anticipate that the sensitivity of the imper-
fect models is improved by utilizing the optimal stochastic
forcing. To see if this is the case, the mean jet, Ū(t), was
perturbed by δŪ = 0.1Ū and the new perfect and imper-
fect model climates were calculated. With the deterministic
eddy parameter, κ∗

M , the information theoretic model discrep-
ancy in the perturbed climate is P = 27.6, 1811, 42401 with
coarse-grainings k = 1, 5, 12, respectively, while the imperfect
model with the same eddy diffusivity κ∗

M and optimal ran-
dom forcing, σT , had the information theoretic discrepancy
P = 0.08, 2.02, 6.54 with coarse-grainings k = 1, 5, 12, respec-
tively. Thus, there was a significant improvement in imper-
fect model sensitivity through the optimal stochastic forcing
which guarateed improved climate fidelity. Note from Fig. 2
that increasing the demand of higher spatial resolution to im-
prove regional model error requires a higher optimal value of
stochastic forcing to decrease the dispersion model error.

Concluding discussion

Here, a systematic information theoretic framework has been
developed to improve model fidelity and sensitivity for com-
plex systems including perturbation formulas and multi-model
ensembles which can be utilized to improve both aspects of
model error simultaneously. A suite of models were utilized
to demonstrate facets of the proposed framework. These re-
sults include simple examples of imperfect models with perfect
equilibrium statistical fidelity where there are intrinsic natu-
ral barriers to improving imperfect model sensitivity. Linear
stochastic models with multiple spatio-temporal scales have
been utilized to demonstrate the information theoretic ap-
proach to equilibrium sensitivity, the role of increasing spatial
resolution in the information metric for model error, and the
ability of imperfect models to capture this sensitivity. Finally,
an instructive statistically nonlinear model with many degrees
of freedom, mimicking the observed non-Gaussian statistical
behavior of tracers in the atmosphere, with corresponding
imperfect eddy diffusivity parameterization models are uti-
lized here. They demonstrate the important role of additional
stochastic forcing of imperfect models in order to systemat-
ically improve the information theoretic measures of fidelity
and sensitivity developed here.
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Revealing long-range predictability and model error

through coarse-grained partitions of phase space
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Strategies for phase-space partitioning
n-dim. space of initial data

z∆τ

θ3
θ2

d2

d1 d3

θ1

Each cluster is characterized by
its centroid, θk.

1 Collect observations z(t) over a time window ∆τ and
compute the average,

z∆τ =
1

∆τ

�

∆τ
dt z(t).

2 Set S equal to the cluster that lies closest to z∆τ , i.e.,

S = argmin
k

dk, dk = �z∆τ − θk�.



The predictive information content in a partition

peq(At)

p(At | 1)

At

pr
ob

.d
en

si
ty

p(At | 3) Predictive skill given that the initial data
lie in the k-th cluster:

Dk
t = P(pk

t , peq), pk
t (A) = p(At | S = k).

“Super-ensemble” measure of skill:

Dt =
K�

k=1

πkDk
t , πk = p(S = k).

Interpretation
Dt is equal to the mutual information I(At; S) between the
coarse-grained initial data S and the value At of the
prediction observable at time t.
Dt vanishes if and only if S and At are statistically
independent; namely, in the t→∞ limit.
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What is filtering?
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The correction step is an application of Bayesian update

p(um+1|m+1) ≡ p(um+1|m|vm+1) ∼ p(um+1|m)p(vm+1|um+1|m)

Kalman filter formula produces the optimal unbiased posterior
mean and covariance by assuming linear model and Gaussian
observations and forecasts errors.



Theoretical and Computational Issues:
� Handling nonlinearity! Why not particle filter? Convergence

requires ensemble size that grows exponentially with respect to

the ensemble spread relative to observation errors rather than

to the state dimension per se(Bengtsson, Bickel, and Li 2008).

� How to handle large system? Perhaps N = 10
6

state variables

(e.g., 200 km resolved Global Weather Model)

� Where is the computational burden? Propagating covariance

matrix of size N × N (6N minutes = 300,000 hours).

� Some successful strategies: Ensemble Kalman filters (ETKF

of Bishop et al. 2001, EAKF of Anderson 2001). Each

involves computing singular value decomposition (SVD).

� However, these accurate filters are not immune from

”catastrophic filter divergence” (diverge beyond machine

infinity) when observations are sparse, even when the true

signal is a dissipative system with ”absorbing ball property”.



Mean Stochastic Model

The prototype one-mode stochastic mean model

du(t) =
[

(−γ̄ + iω)u(t) + F (t)
]

dt + σdW (t)

where one fits the parameters using climatological statistical
quantities such as the energy spectrum and correlation time.

This ”poor-man” strategy is discussed in Harlim and Majda
Nonlinearity 2008, Comm. Math. Sci. 2010.



Stochastic Parameterized Extended Kalman Filter:

We consider the following canonical model that accounts additive
and multiplicative biases:

du(t) =
[

(−γ(t) + iω)u(t) + F (t)+b(t)
]

dt + σdW (t)

db(t) = (−γb + iωb)b(t)dt + σbdWb(t)

dγ(t) = −dγ(γ(t)− γ̂)dt + σγdWγ(t)

We find stochastic parameters {γb,ωb,σb, dγ ,σγ} that are robust
for high filter skill beyond the MSM and in many occasions
comparable to the perfectly specified filter model.

This special form has exactly solvable nonlinear solutions and
moments and we do not need any linearization as in the standard
EKF.
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a) Test Models for Improving Filtering with Model Errors through Stochastic
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Ch 13 of: Systematic Strategies for Real Time Filtering of Turbulent Signals in
Complex Systems (with A.J. Majda), Cambridge University Press (in
preparation), 2010.



Test model for true signal

Consider the following SDE

du(t)

dt
= −γ(t)u(t) + iωu(t) + σẆ (t) + f (t)

as a test model for filtering with model error.

To generate significant model errors as well as to mimic
intermittent chaotic instability as often occurs in nature, we allow
γ(t) to switch between stable (γ > 0) and unstable (γ < 0)
regimes according to a two-state Markov jump process.
Assume the following observation model:

vm = u(tm) + σo
m, σo

m ∼ N (0, ro). (1)



True Signals for Unforced and Forced cases
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One mode demonstration of the filtered solution:
observed mode
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One mode demonstration of the filtered solution:
unobserved parameters
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Canonical Spatially Extended Turbulent Systems

We consider a stochastic PDE with time-dependent damping
Langevin equation for the first five Fourier modes, i.e.,

duk(t)

dt
= −γk(t)uk(t) + iωkuk(t) + σkẆk(t) + fk(t), k = 1, . . . , 5,

and linear Langevin equation with constant damping d̄ for modes
k > 5,

duk(t)

dt
= −d̄uk(t) + iωkuk(t) + σkẆk(t) + fk(t), k > 5.



Turbulent barotropic Rossby wave equation:
ωk = −β/k ,Ek = k−3

(a)

240 245 250 255 260 265 270
0

1

2

3

4

5

6

240 245 250 255 260 265 270
−0.5

0

0.5

1

1.5

2

2.5
(b)



Example: 123 grid pts (61 modes) but only 41 observations (20
modes) available
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Incorrectly specified forcings, observed only 15
observations of 105 grid points
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Canonical Model for Midlatitude Geophysical Flows:

The dynamical equations for the perturbed variables are:

∂q1
∂t

+ J(ψ1, q1) + U
∂q1
∂x

+ (β + k2dU)
∂ψ1

∂x
+ ν∇8q1 = 0

∂q2
∂t

+ J(ψ2, q2)− U
∂q2
∂x

+ (β − k2dU)
∂ψ2

∂x
+ ν∇8q2 + κ∇2ψ2 = 0

where qj is the quasi-geostrophic potential vorticity given as

qj = βy +∇2ψj +
k2d
2
(ψ3−j − ψj )

with &u = ∇⊥ψ, kd =
√
8/Ld .



In the two-layer case, the barotropic vertical and baroclinic modes
are defined as ψb = (ψ1 + ψ2)/2 and ψc = (ψ1 − ψ2)/2,
respectively.
Notice that the barotropic mode dynamical equation,

∂qb
∂t

+ J(ψb , qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb

+
(

J(ψc , qc) + U
∂∇2ψc

∂x
− κ∇2ψc

)

= 0

is numerically stiff when k2d is large (ocean case).



The 2-layer QG model with baroclinic instability
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Stochastic Models for Filtering the barotropic mode:

Recall that

∂qb
∂t

+ J(ψb , qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb +

(

baroclinic term
)

= 0

where qb = βy +∇2ψb.

Poorman’s stochastic models: replace the nonlinear terms and
all of the baroclinic components by Ornstein-Uhlenbeck processes.
Discrete Fourier Transform:

ψ =
∑

k,!

ψ̂k,!e
i(kx+!y)

Thus, each horizontal mode has the following form

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f (t)dt + σdW (t)

and our task is to parameterize d ,ω, f (t),σ?



Longer deformation radius case (“atmospheric”
regime).
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Shorter deformation radius case (“oceanic” regime).

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

RM
S

36 OBS F=40, Tobs=0.02, ro=17.3655, K=48, r=0.2, L=14

 

 
SPEKF
MSM1
MSM2
LLS−EAKF
obs error

1 2 3 4 5 6 7 8 9 10 11 12
10−4

10−2

100

102

Sp
ec

tra

mode

 

 
SPEKF
MSM1
MSM2
true
LLS−EAKF



1 2 3 4 5

1

2

3

4

5

−1

−1 −1

−0
.8

−0.8 −0.8

−0
.6

−0.6

−0.6

−0
.4

−0.4

−0.4

−0
.2

−0.2 −0
.2

0

0

0

0 0.
2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.8

0.8

0.8

1

1

1

1

TRUE AT T=100

1 2 3 4 5

1

2

3

4

5 −1

−1

−0.8

−0.8

−0.6

−0.6

−0
.4

−0.4

−0.4

−0
.4

−0.2

−0.2
−0

.2

0

0

0

0

0.2

0.2

0.2

0.4

0.
4

0.4
0.6

0.
8

1

1
LLS−EAKF, Tobs=0.02, RO=17.3655

1 2 3 4 5

1

2

3

4

5

−1

−1

−1

−0
.8

−0.8

−0.6

−0
.6

−0.4

−0
.4

−0.2

−0
.2

0

0

0

0.2

0.2 0.2

0.4

0.4 0.4

0.6

0.6

0.
6

0.8

0.8

0.
8

1

1

1

1

SPEKF, Tobs=0.02, RO=17.3655

1 2 3 4 5

1

2

3

4

5

−1

−1

−1

−0.8

−0.8

−0.6

−0.6

−0
.4

−0
.4

−0
.2

−0
.2

0

0

0 0

0.
2

0.2

0.2

0.4

0.4

0.
4

0.
6

0.6

0.
6

0.
8

0.8

0.
8

1

1

1

OBS, Tobs=0.02, RO=17.3655



Summary:

1. MSM: We introduce reduced stochastic models through
replacing the nonlinearity and baroclinic components with
Ornstein-Uhlenbeck process for filtering purpose. This
reduced poor man’s strategy is numerically very cheap and
accurate in a regime when the dynamical systems is strongly
chaotic and fully turbulent.

2. SPEKF: We introduce a paradigm model for “online” learning
both the additive and multiplicative biases from observations
beyond the MSM. This model is analytically solvable such
that NO LINEARIZATION is needed when Kalman filter
formula is utilized.
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