Assessing representations of model uncertainty in seasonal forecast ensembles

Antje Weisheimer

ECMWF and Oxford University, NCAS

Thanks to

Francisco Doblas-Reyes, Tim Stockdale, Thomas Jung, Glenn Shutts, Hannah Cloke, Florian Pappenberger and Tim Palmer

ENSEMBLES

"ENSEMBLE-based Predictions of Climate Changes and their ImpactS"

Multi-model ensemble (MME)

- five coupled atmosphere-ocean GCMs for seasonal forecasts developed in Europe
- 9 initial condition ensemble members → 45 members

Perturbed parameter ensemble (PPE)

- uncertainty in poorly constrained cloud physics and surface parameters in HadCM3
- 8 model versions with simultaneous perturbations
 - to 29 parameters + 1 unperturbed member
- no control run available

Stochastic Physics Ensemble (SPE)

- model uncertainty in coupled ECMWF model due to variability of the unresolved scales
- two-scale perturbed diabatic tendency scheme: τ=6h/30d and L=500km/2500km
- kinetic energy backscatter scheme
- 9 initial condition ensemble members
- control run without any stochastic physics (CTRL)

Coupled seasonal forecasts over the period 1991-2005 Initialised on 1st May and 1st November each year Assessment of monthly and seasonal forecast skill

Niño3 SST forecasts: spread-skill

Weisheimer et al. (2011)

CECMWF

Antje Weisheimer

ECMWF model error workshop

Performance of the new operational seasonal forecasting system S4 (new stochastic physics) versus previous systems

Impact of ensemble size

CECMWF

Antje Weisheimer

ECMWF model error workshop

Brier Skill Score ∞

1st month

Nov

cold

CECMWF

Antje Weisheimer

ECMWF model error workshop

Brier Skill Score ∞

1st month

Nov

cold

CECMWF

Antje Weisheimer

ECMWF model error workshop

Brier Skill Score ∞

months 2-4

reliability diagrams

CECMWF

ECMWF model error workshop 22 Jur

highest BSS ∞

1st month

CECMWF

ECMWF model error workshop 22 June 2011

precipitation

highest BSS ∞

1st month

CECMWF

highest BSS ∞

2-4 months

cold JJA warm JJA CTRL SPE cold DJF warm DJF PPE MME

CECMWF

precipitation

highest BSS ∞

2-4 months

ECMWF

ECMWF model error workshop 22 June 2011

2-4 months

combined PPE & SPE

CECMWF

ECMWF model error workshop 22

Outlook: vorticity confinement

CECMWF

Antje Weisheimer

ECMWF model error workshop

Outlook: vorticity confinement

blocking frequency

DJF Z500 synoptic activity

Antje Weisheimer

ECMWF model error workshop

Outlook: Land surface parameter uncertainty

seasonal forecast ensemble:

- T159, 25 members
- **1989-2008**
- May start dates (→ JJA)

Perturbed land-surface parameters (+/- 20%):

- Hydraulic conductivity
- Curve shape parameter of soil moisture characteristic (van Genuchten α)

CECMWF

Outlook: Land surface parameter uncertainty

CECMWF

Antje Weisheimer

ECMWF model error workshop

24 CMIP-3 climate models for the 20th century, 35 quantities

M_{eff} for individual quantities: 3 ... 15

M_{eff} averaged over all quantities: 7.5 ... 9

Current interpretations of MME may lead to overly confident predictions

ECMWF model error workshop

CECMWF

Antje Weisheimer

ECMWF model error workshop

Conclusions

- MME performs on average better than any single model ensemble due to reduced overconfidence
- ENSO: MME very good, SPE improved over CTRL, PPE rather poor
- Monthly forecasts: SPE globally most skilful for most land temperature and precipitation events, regional variations
- Seasonal forecasts: MME (SPE) on average most skilful for temperature (precipitation) over land, regional variations
- PPE: no control ensemble available \rightarrow quality of base model?
- SPE becomes competitive to MME and should also be included in uncertainty estimates of climate predictions/projections
- Combination of PPE and SPE has potential to improve skill further beyond the MME
- Some promising test results with vorticity confinement (mean flow, blocking, synoptic activity)
- Preliminary test on including uncertainty in land surface parameter perturbations (improved forecast skill over southern Europe summer temperatures)

References

- Doblas-Reyes, F.J., A. Weisheimer, M. Déqué, N. Keenlyside, M. McVean, J.M. Murphy, P. Rogel, D. Smith and T.N. Palmer (2009): Addressing model uncertainty in seasonal and annual dynamical seasonal forecasts. *Quart. J. R. Meteorol. Soc*, 135, 1538-1559.
- Doblas-Reyes, F.J., A. Weisheimer, T.N. Palmer, J.M. Murphy, and D. Smith (2010): Forecast quality assessment of the ENSEMBLES seasonal-to-decadal Stream 2 hindcasts. ECMWF Tech. Memo., 621, 45pp.
- Ferro, C. (2007): Comparing probabilistic forecasting systems with the Brier Score. *Wea. Forecasting*, 22, 1076-1088.
- Masson, D. and R. Knutti (2011): Climate model genealogy, Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.
- Müller, W.A., C. Appenzeller, F. Doblas-Reyes and M. A. Liniger, 2005: A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. *J. Climate*, 18, 1513-1523.
- Palmer, T.N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G.J. Shutts, M. Steinheimer and A. Weisheimer (2009). Stochastic parametrization and model uncertainty. *ECMWF Tech. Memo.*, 598, 42pp.
- Pennel, C. and T. Reichler (2011): On the Effective Number of Climate Models, J. Climate, 24, 2358–2367.
- Weigel, A.P., M.A. Liniger and C. Appenzeller, 2007. The discrete Brier and ranked probability skill scores. *Mon. Weather Rev.,* 135, 118-124.
- Weisheimer, A., F.J. Doblas-Reyes, T.N. Palmer, A. Alessandri, A. Arribas, M. Deque, N. Keenlyside, M. MacVean, A. Navarra and P. Rogel (2009). ENSEMBLES a new multi-model ensemble for seasonal-to-annual predictions: Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. *Geophys. Res. Lett.*, 36, L21711, doi:10.1029/2009GL040896.
- Weisheimer, A., F. Doblas-Reyes and T. Palmer (2010): Model uncertainty in seasonal to decadal forecasting insight from the ENSEMBLES project. *ECMWF Newsletter*, 122, 21-26.
- Weisheimer, A., T.N. Palmer and F. Doblas-Reyes (2011): Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. *Geophys. Res. Lett.*, submitted.

