WNANYIOWIW TVOINHOLL

731

Verification of extreme weather
events: Discrete predictands

Linus Magnusson, Thomas Haiden and
David Richardson

Forecast Department

September 2014

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWF.

European Centre for Medium-Range Weather Forecasts
— Europdisches Zentrum fir mittelfristige Wettervorhersage
w Centre européen pour les prévisions météorologiques @ moyen terme




Series: ECMWEF Technical Memoranda

A full list of ECMWEF Publications can be found on our web site under:
http://ww. ecmnf. i nt/publications/

Contact: library@ecmwf.int

(©Copyright 2014

European Centre for Medium-Range Weather Forecasts
Shinfield Park, Reading, RG2 9AX, England

Literary and scientific copyrights belong to ECMWEF and are reserved in all countries. This publication
is not to be reprinted or translated in whole or in part without the written permission of the Director-
General. Appropriate non-commercial use will normally be granted under the condition that reference
is made to ECMWF.

The information within this publication is given in good faith and considered to be true, but ECMWF
accepts no liability for error, omission and for loss or damage arising from its use.


http://www.ecmwf.int/publications/

Verification of extreme weather events: Discrete preddsan cECMWF

Abstract

Forecasting severe weather is one of four main goals in thd\KE strategy 2011-2020. In this re-
port we evaluate the forecast performance for extreme swdiémperature, wind speed and precip-
itation, all verified against SYNOP observations. We corafhe high-resolution forecast (HRES),
the ensemble control forecast (CTRL)and the ensembledstdENS). We focus on the frequency
bias, the SEDI score and potential economical value.

Comparing the evolution of the SEDI score for three différparcentiles since 2002, we found

that SEDI for the 98th percentile has improved more over tst @0 years than the 50th and 80th
percentile, with the clearest result for 7-day temperafarecasts. This indicates that forecasting
extremes have benefited even more from improvements in tieedst system (data assimilation
and model) than the forecasting of more average weather. ckfeoaledge that for many places

and parameters the 98th percentile cannot be classifiedraesdHowever, sample size for higher
thresholds is not sufficient to give robust results. Foryealtreme/severe events (with return periods
of several years), we believe that one has to look into eaetifspcase.

1 Introduction

Forecasting severe weather is one of four main goals in the ECMWF sti2@édy2020. Severe weather
appears in many shapes such as wind storms, precipitation, thunders$teatnsaves and cold spells and
these meteorological conditions lead to floodings, forest fires, low alitgesents etc. To evaluate the
usefulness of forecasts for severe weather, suitable verificatiorunesaare needed as well as reliable
data of the outcome of the event (observations).

Events can be defined based on absolute thresholds (e.g. gale-iad® or the degree of severity
compared to climatology (e.g. wind speeds above the 99th percentile). Whidbslodute value may
be more relevant with respect to damage, the percentile-based definiteefus for producing spatially
or seasonally aggregated scores, since by definition the number ¢$ ®emomes comparable between
different regions and seasons. An additional reason for choogiegcantile threshold is that the actual
impact of an event of given absolute intensity in a certain region will deparebw often it occurs in that
location, as this will influence the degree to which the natural environmeifdjrims and infrastructure
are adapted to it. In any case, the choice of specific thresholds invobaa@romise. A high threshold
is more targeted to rare events but at the cost of a small sample, while a le@dlttenay provide more
reliable statistics but fails to distinguish the skill in forecasting extreme weatbier the more general
skill of the forecast.

In 2010 a report about verification measures was delivered to thenibatdvisory Committee (TAC).
The report discussed, among others, verification of severe weaitlat was noted that WMO does
not provide guidelines for the verification of severe weather event® r&port recognised the issue
that temporal and spatial resolution of observations may be insufficieraditine verification of severe
events. The project also discussed different metrics based on hitssraiz$éalse alarms. A variety of
scores was available (see eSgephenson et 2008 for a review), but none of the measures available at
the time satisfied all of the outlined requirements for verification of rare eveloisever, since the TAC
report, the symmetric extremal dependency index (SEDI) has been deddbyFerro and Stephenson
(2011 to address some of the shortcomings of previous scores (hedgingsaddte dependence). It has
subsequently been used to verify precipitation forecasts from UK Megadind ECMWF orth et al,
2013.

A basic measure of forecast quality is whether the model is able to simulatedhts ®f interest with
the correct frequency. This aspect is evaluated using the frequeasyf the events. Here the local
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conditions (orography and surface characteristics) at the obsemngtttion play a role, as the direct
model output is representative of the grid scale rather than a specifimloca

The current (supplementary) headline score for severe weather RGBearea calculated for the Ex-
treme Index Forecasts (EFI). For the verification, the event is defiedteeme if the observed values
is above the 95th percentile. The evolution of the ROC area since 2004ecfurid in Figure 34 in
Richardson et al(2013. One drawback of this verification is that the EFI is an index and is not sup
posed to directly correspond to a specific percentileGhelli and Primo(2009), precipitation forecasts
from ECMWF were evaluated using the extreme dependency score (EDB)s report we extend the
investigation to temperature and wind speeds, using the SEDI score asswie#l Rotential Economic
Value (PEV) Richardson2000, together with an evaluation of the frequency bias for extreme events.

2 Definition of verification scores

Many scores that are considered for severe weather are bas@thondwvents, by simulating a decision
made from a forecast. The event could be defined either as exceedperific absolute value of a
physical quantity, or exceeding a percentile of the climate distribution. Thembiecision (yes/no)
could come from a deterministic forecast or use a probabilistic forecazgirfds taken if the probability
is higher than a specified value) as a basis for the decision. Paired wittbsleeved outcome, the
forecasts represent four types of verification events (hits, misdss, d&arms and correct negatives),
forming a 2x2 contingency table (Taklg.

| | Obs. Yes| Obs. No|

Fc. Yes| a b
Fc.No | c d

Table 1: 2x2 Contingency table

From Tablel, the frequency bias is defined as

a+b
g 2*b L)
a+c
which is the ratio between the number of forecasted and observed edevatue larger than 1 means
the event is overforecast, and a value below 1 means it is underforecas

2.1 SEDI score

Several scores to evaluate the forecast quality based onTaldeavailable (threat score, equitable threat
score, Peirce skill score, Heidke skill score, etc.). A common problemémy of these measures is that
they degenerate to trivial values for rare events (either convergingtd}) when the correct negative
term dominates the outcome. For a review of the properties of differenésceeeStephenson et al.
(2008. In Stephenson et (2008 the extreme dependency score or EDS was introduced to overcome
the convergence problem. However, it was found that EDS encaubegiging (yielding a better score

for a system that over-forecasts an eve@f¢lli and Primg2009 Primo and Ghelli2009.
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In Ferro and Stephens@®011) the symmetric extremal dependence index (SEDI) score was introduced.
The score is defined as

logF —logH —log(1—F) +log(1—H)

EDI= 2
S logF +logH +log(1—F) +1log(1—H) @
where H is the hit rate defined as
a
_ 3
a+c ®)
and F is the false alarm rate
b
F=brd “)

The SEDI score fulfils most of the desired properties. However, aggubout inFerro and Stephenson
(2011, the forecasts have to be calibrated to a frequency bias equal to rk veftdfication to produce
a score suitable for comparing different forecasting systems. This nteanthe results need to be
interpreted as potential rather than actual skill. We complement this metric witfotestjal economic
value, where such calibration is not required.

The calibration of SEDI is performed for each threshold independentgr, 8 month (i.e. seasonal)
verification periods. Data from all stations in the verification domain (Eyrigppooled, which is nec-

essary to get a large enough sample, and made possible by the useeoftifetbresholds. The actual
calibration is carried out iteratively by varying the percentile thresholdieghpo the forecast such that
the misses and false alarms (the off-diagonal elements of the contingefeyttatome equal.

2.2 Potential economic value

For ensemble forecasts one can construct 2x2 contingency tablestontzer of discrete probability
thresholds. In decision making, the probability threshold should be depend the cost-loss ratio of
the application. If the probability for the forecast exceeds this thresttwdiprecast is considered as a
yes. One way to summarise the results from several probability threshdtus tential economical
value Richardson2000. The score is building on a simple cost/loss model, where the event is ¢ednec
to a loss(L) that could be avoided bytaking an action which is associated witst¢C).

C, min(¢,0)-FE(1-0)+Ho(1—§)—0

PEV({) min(€,5) — 6 (5)

The PEV is a function of the cost/loss rat@)(and is determined by the climatological occurrence of the
event 0), the false alarm rate (action was taken but proved unnecessary) and hitHatiée loss was
prevented by the action). A zero value of PEV means that there is no b@akdiive to climatology) in
using the forecast as a basis for action, while a PEV equal to 1 meansthatveays takes the correct
decision about the action (perfect forecast).

The PEV is a function of the cost/loss ratio of an application. If the costefgmting a loss is close to
the loss suffered in case of an event, it is rarely an advantage to usddiraation. In contrast, if the
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Figure 1: Potential economical value (PEV) for synthetid¢adfor different probability thresholds (coloured lines)
and the maximum PEV (black line).
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cost is small compared to the loss, the preventing action can be taken alnasiasg of the forecast.
However, in between these extremes the forecast information can plagialaole in optimising the
decision process. In many cases the cost/loss ratio will be a function ajrieakt lead time, since the
cost of an early action may be different (typically less) than that of a ldteracEarly warnings could
therefore have a lower cost/loss ratio than forecasts issued closer teetiite 8y using an ensemble
system, which is able to produce different probabilities for an event, anause different probability
levels for applications with different cost/loss ratio. However, the difficulith PEV is for the user
to know the cost and the loss of their application. Another limitation is that theardsiss may be
dependent on the decision history (e.g. too frequent cancellation o tesiding to a change in travel
habits). In spite of these limitations of the cost-loss model we neverthelesgleothe PEV very useful
for quantifying the benefit of the forecasts for decision making.

For ensemble forecasts, the PEV is calculated for a set of probabilityhthidss(e.g. action is taken if
10%, 20%, .. 90% of the members have the event). The maximum PEV for temblesis determined
from the probability threshold with the highest PEV for each specific costfato. This is illustrated
in Figurel for synthetic data and an observed occuram®{ 30%. For single, deterministic forecasts
the maximum PEV is equal to the PEV curve determined by the 2x2 contingereyfdalges/no of the
binary event.

The procedure of maximising PEV from different probability thresholds ads to an auto-calibration
of the frequency bias for the forecasts. If the model under-fote@sevent, the optimum probability
threshold is higher than for an unbiased system. In the case of a deternforistiast, a frequency bias
will lead to shift in the PEV (towards lower cost-loss ratio for over-fostitay, and vice versa).
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3 Model description

In this report we verify the high-resolution foreacast (HRES) ancede forecast (ENS). Both are
based on the same data assimilation but the forecast models are usingnréfscdutions.

| Year | Change \
Nov 2000 | T, 511/L60 (HRES), T255/L40 (ENS)
Jan 2003 | Major data assimilation, cloud physics and convection changes
Apr 2005 | New moist boundary layer scheme

Feb 2006 | T_799/L91 (HRES),T399/L62 (ENS)
Sept 2006| Revised cloud and surface drag scheme
Nov 2007 | Major physics changes (see text)

Feb 2010 | T 1279/L91 (HRES),T639/L62 (ENS)
June 2011 Ensemble of Data Assimilations (DA variances and ENS pert.)
Nov 2011 | New cloud physics and roughness length

Table 2: Major upgrades affecting the forecasting systemesthe year 2000.

Table 2 shows a list of major upgrades (not exhaustive) in the forecastingnsyatd=CMWF since
2000. A comprehensive description of the changes between 200®88ds2given inJung et al(2010.
The changes in November 2007 (cy32r3) included a new formulation mfective entrainment, re-
duced vertical diffusion, and modifications to the gravity-wave dragraeha&nd is further documented
in Bechtold et al(2008.

Results from the operational forecasts will be compared to results frok IBRrim (ERA-I). The
ERA-I reanalysis uses the forecasting system (both assimilation and maatdbeiteme operational in
September 2006, but with different resolutid@eg et al.2011). The horizontal resolution is 55, and
it has 60 vertical levels. One benefit of a 'frozen’ forecasting sydtkenERA-I is that it provides a
benchmark for operational forecasts and allows the effect of atmadsplagiability on the scores to be
taken into account.

To calculate a reference model climate we use the reforecast dataget farsemble system which has
been operationally produced since 2008. It consists of one unpedtad four perturbed ensemble
members and is run once a week for initial dates in the past 20 years (I8 hefare 2012). The
sensitivity of the resulting model climate to choices in the reforecast coafignr and their effect on
the extreme forecast index (EFI), are discussedsdater et al.(2014). An important property of the
reforecasts is that they are always produced with the latest model cycle.

4 Verification data

For all forecast verification, a proxy for the true outcome is essentiabuld be an analysis originating
from the data assimilation system, or observations. While the analysis is adjddteset covering the
whole globe and easy to use, the major drawback is that the errors in tlysiarzae correlated with
errors in short-range forecasts and the analysis system sharesfdbmeystematic error characteristics
of the forecasts (provided analysis and forecast are from the sama Bystiem). This is in particular
a problem for weather parameters near the surface (2-metre tempepaaipitation, 10-metre wind
speed), which are model generated quantities, as the forecast mdditarassimilation model use the
same parameterisations.
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Figure 2: Cumulative distribution function of 2-metre tezngture in July for the model (dashed) and observed
(solid) for Heathrow Airport (blue) and RAF Northort (gregtoth in western London, UK.

Ultimately the forecasts should be evaluated against observations. Howemeentional observations
(SYNOP, radiosondes, aircraft) are point measurements and do preseat the same scales as the
model, which generates output as an average over the grid box. Thiglenevor severe weather
events that are small-scale (e.g. convective precipitation) and leadsréseafativeness errors when
comparing model data with observations. Another issue is to find a good metiwlrdn the observed
and modelled quantities, e.g. for wind gusts. A third issue is the quality corftadiservations, which
becomes especially relevant for severe weather where the obsesvitienextreme values. In data
assimilation advanced methods are used for observation quality conteal baghe difference between
short forecasts and observations (see égdersson andaivinen(1998). However, for verification
purposes, especially for surface variables, the risk is to discardat@xtreme observations in cases of
bad forecasts or at stations where the representativeness mismatatcialgsptrong.

In order to illustrate the problem of observation quality control and remtesiveness, Figur2 shows
the cumulative distribution function (CDF) for 2-metre temperature at 12 UTIDly The two stations
plotted here are Heathrow airport (blue) and the Royal Air Force basthdit (green), both located
in western London. In the figure also the model climates for each statioreddrom reforecasts are
also plotted. The model climate here is calculated from the reforecast datehsee we have used 4
ensemble members and 4 dates in July every year in a 18-year period (EB®t#ta points). The model
climate is valid for a 132-hour forecast and at 12UTC on the day. The cliotgtof the observations is
calculated for July 1980 to 2009 (about 900 data points in total), and thetsamef the day.

In this case the model climatologies are identical as both stations have the samest geidpoint. For
both stations the model underestimates the temperature during warm day6tttgetentile for the
model is 23.8C, while for observations in Heathrow it is 2B. This could either be due to a model bias,
or limited representativeness of the observations; Heathrow has lafigédaiwhich probably warm up
more during sunny days than the grid box average. For Northort thetiails ¢n the warm and the cold
sides) are much longer than for Heathrow. This is unexpected as the stagocisse to each other and
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Figure 3: Cumulative distribution function of 10-metre @ispeed in August for the model (dashed) and observed
(solid) for three stations close to Reading, UK.

both are airfields. Therefore one can suspect some errors in thevatimes contributing to the observed
climate for Northort. However, such a quality control is not trivial as thieiles are not unrealistic.
The SYNOP data available for this study has been subjected to a very singbiy gontrol only, by
excluding values which are clearly unphysical.

As a second example, FiguBeshows the CDF for August from observations of the 10-metre wind speed
for 3 stations around Reading, UK, and the model climate for the neares gradpoint to the stations.
The first striking feature in the plot is the step-like function of the obse@®@#. This is because wind
speeds are reported as integer numbers in SYNOP messages. This putsoa It accurately the
forecasts can be verified, but also leads to inaccuracies in the CDsdrim@n (for the calculation of

the CDF) is to add a random number to each observation in order to smootistititeution, but it has

not been used in this study.

The observed CDF differs among the three stations, while the model CBFsuah more similar. This

is mainly caused by local conditions around the observations stations. gx#rngle, the station plotted
in red is Farnborough, which is located next to an airfield and is probaldgsasheltered station than
the other two (Bracknell - blue, High Wycombe - green). The model CEmseto agree better with
Farnborough than with the other ones. This likely implies an over-estimatioreajrtti box average it

is supposed to represent.

In this report we focus on the verification of precipitation, wind speedtangerature against SYNOP
observations. While wind speed and temperature are instantaneous tha&ymscipitation is accumu-
lated over 24-hours. We define the lead time as the end of the 24-hourwvifadb-day forecast is
accumulated between day 4 and day 5). We will only discuss verificatioftsésom Europe (defined
as35N-75N, 12.5W-42.5Ewhere station density is high, but the same methodology can be applied to
other parts of the world with a sufficiently dense observation network2fuoetre temperature and 10-
metre wind speed about 1600 stations were available, for 24-h precipifdt@ifhstations. A weighting
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Figure 4: Value of the 98th percentile for 10-metre wind shaeAugust for southern Europe. Model climate
(shade) and observed climatology (dots).

function is used to account for geographical variations in station dergigwell et al, 2010. The ver-
ification methodology follows the one usedHiaiden et al(2012). The station climatology is calculated
separately for each calendar month.

5 Climatology of extreme events

Before we evaluate the predictability of extreme events we investigate systemat&in the forecasted
climatological distribution of such events. By climatology we refer to the fulbatlity density func-
tion (PDF) for each point (observation station or model grid point). To $autie tails of the PDF, a
large number of observations (or forecasts) are necessary. &udeoithe seasonality in the PDF, the
climatology is estimated for each calendar month. The PDF will mainly be evaluatedcinmulative
form (CDF), where the cumulative frequency of the event below aicettieeshold is considered. The
phrasing "98th percentile” therefore referes to the value that is na&tesbard 98 % of the time. Hence,
evaluating daily data, values above the 98th percentile will on averagargery 50th day in each grid
point.

Figures4 to 6 show the 98th (2nd in the case of cold temperatures) percentile from the oimdate
(shaded) and observed climatology (dots). These plots highlight afeiéffeoences between the mod-
elled and observed climatology. Obviously there are other regions in Ewvbjch are of interest and
other times of the year that need further investigation. These plots meretyasexamples.

Figure4 shows the 98th percentile for 10-metre wind speed in August. Over the Adpsitidel gives
very low values of the 98th percentile. Observed values show a much lagations in this region
than for the model. There are stations with more than 14 m/s as observed @@tthgercentile, while
the model climatology gives values less than 4 m/s. The stations with high extremig avantypically
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Figure 5: Value of the 98th percentile for 24-hour precipita in August for central Europe. Model climate
(shade) and observed climatology (dots).

mountain stations, whereas nearby stations with a wind-speed climatology sinherrwodel are usu-
ally located in valleys. Along the coasts the model underestimates the 98tmiilerae many stations,
for example along the French Mediterranean coast. Here the climatologysig\eto the land-sea mask
in the model. It is another example of a representativeness mismatch betwaeeodal and observation
scales. Nevertheless, in the evaluation performed here we included botitaimoand coastal stations.

Figure5 shows the same as Figuddout for 24-hour precipitation in August. Here the model generally
underestimates the extreme values of precipitation (still 98th percentile) emtratEurope. This re-
sult is somehow expected as the model output is integrated over a grid hide,the observation is a
point measurement. This creates a discrepency during localized comvewtints. Another area where
the model underestimates the values is the northern side of the Alps, indicatinglarestimation of
orographic rainfall enhancement in upslope-flow situations. During tloel$l in Central Europe in June
2013 this was the case and is discussddaiden et al(2014).

For extreme values of temperature we have to consider both tails of the distilfjwarm and cold
events). Figuré(a) shows the difference between the median (50th percentile) and theeBrehtile
for 2-metre temperature in January, verified at 12 UTC. The reasopldtiing the difference to the
median is the large difference in mean values between northern and sokt@pe. In general, the
difference between the median and the extreme percentiles is much lessateaus over land. For the
cold extremes the model in general underestimates the width of the cold taildi§tribution, especially
over southern Scandinavia. This is an effect of strong inversionssm@v, which are insufficiently
captured by the model, and which persist during the day at northern lativideer time because of the
lack of sunlight.

Figure6(b) shows the the difference between the 98th and 50th percentile of theresmme for southern
Europe in January. North of the Alps (and over the Balkans) the watramgs are underestimated in
the model. This bias could be due to a weaker Foehn effect in the model cediripareality, but this
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(b) 98th-50th percentile (southern Europe)

Figure 6: Difference in values for extreme (2nd in the upped 88th percentile in the lower panel) to the median
(50th percentile) for 2-metre temperaure in January. Madighate (shade) and observed climatology (dots).
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needs further investigation.

Figure7 shows the same as Figusebut for July. Here the model underestimates the warm anomalies
during the summer while the cold anomalies are in better agreement. The probitgmnteenwarm
anomalies seem to be worst over southern Scandinavia where the modfétienhde to the median is 6-

8 degrees while the observed differences for many stations are 16gi@es. Similar errors are present
over France and south-eastern England, where the observedlitgrialsimilar to the variability over
eastern Europe where the weather is more dominated by continental aismasse

Figure8 shows the evolution of frequency bias from 2002 to 2013 for the 98pdte of 10-metre wind
speed (a), 24-hour precipitation (b) and 2-metre temperature (c). #dlidavalid for 12 UTC. In the
figure results are included for HRES (solid), CTRL (dotted) and ERAriimt¢dashed) and 1-day (red),
4-day (green) and 7-day (blue) forecasts. In the absence of ndaftethe frequency bias should be
approximately constant with forecast range and, optimally, it should alstobe to 1. The reasons for a
frequency bias could be representativeness (model resolutiony amoide!| errors. As already discussed,
large representativeness errors may occur in the presence of stegpphy for wind speed, but also
surface characteristics (e.g. closeness to sea and surface resiplreeind the station play a significant
role. ERA-Interim is using a fixed forecasting system throughout thi@gehence its variability with
respect to the frequency bias mainly reflects atmospheric variability. Utldhe noted that 10-metre
wind speed and 2-metre temperature are not prognostic model variabka® fnterpolated to represent
the measurement height (2 and 10 metres respectively), which is an add#bomce of uncertainty.

For 10-metre wind speed (FiguBa), HRES, CTRL, and ERA-Interim all over-forecast the extreme
winds for the main part of the time-series. The frequency bias was similaflfthree forecasts around
2007, when HRES and CTRL used the same model physics as ERA-Intariimé 2011, the roughness
length was modified in the model, targeting the positive wind bias; this led to a miankedvement of
the frequency bias in HRES and CTRL. For both forecasts the fregumas is similar for different lead
times, indicating no severe model drift with regard to wind speed.

In the case of 24-hour precipitation, the frequency bias is generalbtimedor the 98th percentile. An
interesting feature here is the spin-up in the model during the first daysERA-I the frequency of

the event during the first day of integration is much lower that for longet teaes. For HRES the
opposite holds true since 2009, the event is more frequent during thddirsand then the frequency
decreases. For the 95th percentile (not shown), the precipitation igareeast during the first day and
for longer lead-times the bias is small. Such a spin-up in the model can be dedntettaction between
the data-assimilation and the forecast model.

For 2-metre temperature a large variability from year to year is presentvariability is also present
for ERA-I, suggesting that it is due to the interannual variability, whereaengld winter could have a
different bias from a hot summer, even if both falls into the same percentile.

6 Forecast skill

Before we start to discuss longer-term verification results, we will givexample of forecast verification

for one particular day. Figur® shows hits (green), misses (red) and false alarms (blue) for 10-metre
wind speed valid 28 October 2013 12 UTC. The figure also includes the-sezatevel-pressure for the
forecast (black contours) and the analysis (blue contours). Tleedst was initialised 2.5 days before
(+60h). The forecast is here, for the purpose of illustration, verdigainst the analysis. The top panel
shows verification of an event defined as wind speed greater than 1@vhilis the bottom panel uses
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Tzlg climate Mogth:JUL 00+11¥ 2 percen(iIE, Re-year: ggls

(a) 50th-2nd percentile (northern continental Europe and southamiB8avia)
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(b) 98th-50th percentile (northern continental Europe and southenmd8tavia)

Figure 7: Difference in values for extreme (2nd in the upped 88th percentile in the lower panel) to the median
(50th percentile) for 2-metre temperaure in July. Modelngie (shade) and observed climatology (dots).
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Figure 8: Time-series for 2002-2013 (1-year running meahjrequency bias for 98th precentile over Europe.
HRES(solid), CTRL(dotted) and ERA Interim (dashed). Eiffelead times in different colors.
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Figure 9: Example of hits (green), misses (red) and falsenaga(blue) for forecasts valid 28 October 2013 12z.
The forecasts are verified against the own analysis.
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the 98th percentile of the model climate derived from the reforecast dafar $8ctober. The threshold
16 m/s corresponds to the 98th percentile of the model climate over the North Sea

On this day, a severe storm (Christian) hit the countries around the Neathlisthe forecast, the centre
of the cyclone was somewhat shifted to the west, leading to false alarms to shamgemisses to the

east. Comparing the two different events (16 m/s vs. 98th percentile), adirgd absolute threshold

(16 m/s) leads to exceedence of the threshold mainly over sea, while ddfieimyent relative to the

model climate gives signals also over land. Because of this property, wessithe relative threshold in

the rest of the report.

6.1 SEDI score

Figure 10 shows the SEDI score as a function of the evaluated percentile, foy fodecasts. As de-
scribed above, SEDI is designed to not explicitly depend on the baseTiaeefore a change in SEDI
for higher percentiles reflects an actual change in the ability of the fstiagesystem in predicting such
events. However, we have to bear in mind that the uncertainty in the scoeagses with decreasing
sample size. In general, the SEDI decreases with more extreme eventy (egbentiles), and it does
so more rapidly for percentiles above the 95th. It seems like the behawiotlvef 95th percentile is still
in the "comfort zone” of the forecast system, while for higher percentiileskill deteriorates consider-
ably. This is especially true for 2-metre temperature. In order to verifydrexsts for extreme values
outside this comfort zone, we will subsequently mainly focus on the 98tleptie.

In the figure, results for the HRES (red-solid), ENS control (rechddy and ERA-I (blue-solid) are
included. Comparing HRES and CTRL, HRES is noticeably better, as expfertall parameters and
percentiles, but the difference does not seem to increase with morenexéeents. The difference
between those two (which is solely due to difference in model resolutionpadiest for precipitation

and largest for temperature, which is a somewhat unexpected result.aioglplRES and ERA-I, the
difference between the two increases with higher percentiles for temperatu is close to constant for
the other two parameters.

Figurell shows the SEDI score for the 98th percentile for July 2011 to June Z)a3umction of lead
time. As expected the skill of the forecasts decreases with incresing leadrtaekill is worst for 10-
metre wind speed, while for short-range forecasts the precipitation hagtiest SEDI and for long lead
times the best forecasts are for 2-metre temperature. The reason festipelformance for precipitation
for short forecasts is probably because the precipition is an accumujasedity over 24-hours while
the wind speed and temperature are instantaneous values. For tempetktinree forecasts have some
skill also for 10-day forecasts (the score is 0.3 for HRES), which ism gidong-range predictability
for heat-waves.

Comparing HRES and CTRL, the largest impact of the resolution is seerfi@ttz temperature (as also
seen in Figurel0). This holds true also for ERA-I compared to HRES and CTRL. Having tlgekt
resolution dependence for temperature forecasts is again somewkpéctssl, but could be due to how
well coastlines and mountain areas are resolved.

Comparing the scores for a lead time of 0 days, we can compare the diffdbetween the operational
HRES analysis and the ERA-I reanalysis. The difference is smallestéoipitation where the ERA-I
forecast for the first 24 hours is as good as HRES forecast accteddiatween 24-48 hours. As seen
in the frequency bias, HRES and ERA-I have different kind of spirbigses for precipitation, with
too little precipiation for ERA-I and relatively too much for HRES during thetffsecast day. For
wind speed, the ERA-I reanalysis has the same SEDI score as a 3rdegdofrom HRES. For 2-metre
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Figure 10: SEDI score from July 2011 to June 2013 as functioveoified percentile for 4-day forecasts. HRES
(red-solid), CTRL (red-dashed) and ERA-I (blue-solid).
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Figure 11: SEDI score from July 2011 to June 2013 as functidiorecast lead time for the 98th percentile.

Technical Memorandum No. 731

17



SCECMWF Verification of extreme weather events: Discrete predit$an

temperature, the difference is largest and the ERA-I reanalysis is ttet igan a 4 day forecast from
HRES.

Figuresl2-14 illustrates to what extent forecast skill has improved over time. For the tiermg-devel-
opment of the upper-air scores and the other scores for surfaametars, we refer tRichardson et al.
(2013 andMagnusson and &lén (2013. The panels show time-series from 2002 to 2013 of the dif-
ference in SEDI between HRES and ERA-Interim for three percentiled (80th and 98th). These
three percentiles represent the change in skill for the median, oneshaldiy events, and one-in-fifty-
day events. A positive value indicates that HRES is better than ERA-Inteniigerieral the scores are
better for HRES than ERA-Interim for all years (because of the higksslution), and the operational
forecasts improves over time compared to ERA-Interim due to increasiolyities and model improve-
ments. Any trends in the difference between HRES and ERA-Interim geristposed on considerable
inter-annual variability which increases with lead time and percentile.

For wind speed, we see a large interannual variability for the differen8&DI for day 7, which is not
present for day 1 and day 4. The feature is present for all threpilies but is most apparent for the
98th. The feature is strongest in 2007-2008. For these years, teevelddrequency was higher than
normal (not shown), which could affect the predictability.

Figure13 shows the same as Figut&, but for 24-hour precipitation. Here the improvement with time
is less than for the 10-metre wind. In general the difference to ERA-I idlsshdor the short-range
forecasts. One exception is in 2010 for the 98th percentile when the Tedegast shows the lowest
difference. This coincides with a temporarily higher frequency for tremev

For temperature (Figur#d), the first 3 years of the time-series show no difference for HRES &A&HE

for 7-day forecasts, but a positive difference for the earlier lead tirklEsvever, during the last year
(2012) the 7-day forecast shows the largest difference to ERAFhas hence experienced the greatest
improvement over the last 10 years.

A general conclusion from these plots, although the results are noisgiguér the past ten years SEDI
has improved faster for the 98th percentile than the 50th and 80th percétitee, the forecasts for
extremes seem to have benefitted at least as much from the model andsttatia@sn changes as the
general forecast.

6.2 Results on potential economic value

As a more user-orientated verification, we will in this section show the poteiiaomical value (PEV).
In the end of the section we present a comparison between differareséor this measure. The PEV is
calculated for each cost/loss ratio and is plotted as a function of the ratimdHaPEV value above zero
means that there is an economic gain in using the forecast instead of kgevebdut the climatology
of the event, for a certain cost/loss ratio. A value of 1 corresponds tcctirenical gain if the correct
decision was always taken. For a deterministic forecast, the highest P&ypésted to occur at the
cost/loss ratio which corresponds to the base rate of the event. Hemae rdice event, the cost of
action has to be much less than the potential loss, in order to gain anythinghedorecasts (otherwise
numerous false alarms will cause large costs).

By using PEV as a measure we can directly compare the value of an ensenebkest with that of a sin-
gle, deterministic forecast. By comparing HRES and CTRL the additional wligher resolution can
be evaluated. Comparing CTRL and ENS the effect of probabilistic fstecampared to deterministic
forecasts is shown and comparing HRES and ENS the we have both e@eeigjuestion here is if the
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Figure 12: Time-series from 2002 to 2013 of the differenc8EDI between HRES and ERA-I for 10-metre wind
speeds.
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Figure 13: Time-series from 2002 to 2013 of the differenc8lDI between HRES and ERA-I for 24-hour precip-
itation.
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Figure 14: Time-series from 2002 to 2013 of the differenc8#DI between HRES and ERA-I for 2-metre temper-
ature.
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Figure 15: Potential economical value for the 98th perclen{Pnd percentile for cold temperature) between July
2011 and June 2013. The plotted forecast lead times are }, @gthlue) and 7 (green) days. The plotted forecasts
are HRES (solid), CTRL (dotted) and ENS (dash-dotted).

gain in using an ensemble is larger than the loss due to its lower resolution.

Figurel5shows the potential economic value for the 98th percentile (2nd percemtdeltbtemperature
event) for forecasts from July 2011 to June 2013. In these plots weareh{RES, CTRL and ENS. For
all variables and lead times the PEV benefits from the ensemble informationd@N@ared to CTRL).
The difference is smallest for temperatures and largest for precipitafiop.unexpected result for the
precipitation verification is the better result for CTRL compared to HRES &gr4dland 7. One could
speculate that the higher resolution brings more details in the forecast tH#tdeigyease the score for
long lead times.

For temperature, the PEV is better for warm extremes than cold extremeg at @ae reason for this
has to be further investigated but one would expect that issues with stnmrgions during wintertime
could be a reason for the lower skill with respect to cold extremes. Fortbotherature extremes the
HRES has a non-zero PEV for higher cost-loss ratios than ENS. Thedabisnot improve the upper
cost/loss limit for temperature as it does for wind and precipitation.

Figure 16 shows PEV for three lead times for 4 different forecasting centres (BEM solid, JIMA -
dashed, UKMO - dash-dotted and NCEP - dotted). The upper panesshe results for HRES forecasts.
For Day 1 and Day 4 UKMO has a higher PEV than ECMWF for low cost/lossgavhile the opposite
holds true for higher ratios. One explanation for the difference is theatiaacy in frequency biases
between the centres. As seen in FigBr& CMWF has a negative frequency bias for the 98th percentile.
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Figure 16: Potential economical value for different forstaentres for the 98th percentile between July 2011 and
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For UKMO the bias is positive. Overforecasting of an event favourslost/loss ratios where the cost for
an action is low and one can afford many false alarms, while underfdirgas favoring high cost/loss
ratios where few false alarms are desirable.

The lower panel in Figuré6 shows the same as the upper panel but for the ensemble forecasts. Here
ECMWF has the best PEV for all cost/loss ratios and lead times. Here th efféhe frequency bias

is compensated by the choice of optimal probability threshold for a cost/lisgaaegative frequency

bias is compensated by having a higher probability threshold).

7 Conclusions

In this report we have evaluated the forecast performance for exeeemts of temperature, wind speed
and precipitation. Verification of extreme events is not straightforwardesdmple size is small, and
scores have to be carefully chosen to be applicable to rare events.effigation of extreme events
one needs to define a threshold which could either be an absolute valyseoreatile value relative
to climatology. In this report we have chosen the latter definition to allow thet évesppear at all
grid points. We have mainly focused on the 98th percentile of the climate distribatica compromise
between sample size and degree of extremeness. However, it canued #ngt the 98th percentile
can not be considered extreme, since on average such an evelat sbowr once every second month
at each grid point (high impact events have rather a return period of thane10 years). For wind
speeds, for example, the 98th percentile represents approximately 8tH3 iper second for the main
part of Europe in November. Such a low threshold is needed in orderténaiebust statistics in our
verification.

We have compared the high-resolution forecast (HRES), the ensenttiteldorecast (CTRL) and the
ensemble forecast (ENS). We have also included forecasts run inahelysis project (ERA Interim).
While HRES, CTRL and ENS forecasts use the most recent model versgitml¢wer resolution for
CTRL and ENS), ERA-I uses a frozen forecasting system from 20§&her with a lower resolution.

In this report we have focused on verification against SYNOP obenga However, observations con-
tain errors, originating from measurement errors (typing errors ouim&nt errors) and representiveness
errors. To detect measurement errors one needs to have someaatityf control of the observations.
In this report we have only used a simple quality control and we would like taligiaf this as an area
for further work. The main challenge when verifying against obsemattbat are point measurements
is the difference in scales represented by the observation and the mbe@emaidel is an area average
over a grid box, and with coarse model resolution large representesis@mrors can occur.

As a zero-order metric of the ability to forecast extreme weather we halaated the frequency of
events. In order to predict an event it is crucial that the model carupeosiuich an event with a frequency
similar to the observed one. This evaluation is useful to find systematic mode$iasd to recognize
current limitations in simulating extreme events. By studying maps of frequeiasgdfor the 98th
percentile we highlighted a few potential sources for biases for extreemsv This type of map is
useful for evaluating local biases. The most problematic area in Eurapethie Alps, for all three
variables. Steep orography strongly affects the wind speed meadugeauad as well as precipition
rates and the Foehn effect on the lee side of mountain ranges. Anothelsshe underestimation of
extreme precipitation amounts from convective events.

Several metrics (scores) are available for verification. One cated@gooes are based on hits, misses,
false alarms and correct negatives of a particular event. Scoressigndd to combine these four
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categories into meaningful metrics. We have focused on the recently dedekiEDI score (after having
looked previously at the Peirce skill score and the equitable threat)sddre advantage with SEDI is
that the score remains well-behaved for extreme events, when othes $end to degenerate. However,
the main issue with the SEDI score is that if it is used on uncalibrated foratdat®urs a positive
frequency bias. For a fair comparison of different forecasts theg tmbe calibrated before calculation
of the score. The calibration adds complexity to the verification and rem@résfthe error such that
the result needs to be interpreted as potential skill.

We have also used the potential economic value, PE¢hardson2000, which is based on a simple
decision model. The PEV is a function of the specific cost/loss ratio for alicappn. If the cost for
preventing a loss is close to the loss of the weather event, it is rarely antageao use the information.
In contrast, if the cost is small compared to the loss, a preventing actioneckdn regardless of the
forecast. However, inbetween these extremes the forecast informatiguiay a role in optimising the
decision process. The cost/loss ratio for a user could be a function fafréeast lead time, if the cost for
an early action is different (in many cases less) than a late action. By usimgeable system, which is
able to produce different probabilities for an event, one can use eliff@robability levels for different
lead times.

Comparing different resolutions, our results show the largest impa&sofiution on 2-metre temper-
ature. One could speculate that the higher resolution improves land-sgastaand the agreement
between model topography and station height. Recent findings pointingd®Witeering of the model
orography might also play a role hei®andu et aJ.2014). The difference in scores between the resolu-
tions also impact the PEV scores for ENS, which for some cost-loss ratideveer than HRES.

The scores are in general lowest for 10-metre wind speed. For thaspéer we have seen that local
conditions around the stations have a large influence and the repregargasi uncertainty is high. For
short forecasts (1-3 days) the highest scores are found fdpfagion while for medium-range forecasts
(day 3-10) the temperature has the highest scores. One reason foouldsbe that precipitation is
accumulated over 24 hours and therefore the timing error is to some dei(gesdfiout. A smaller
contributing factor is that what we call a 1-day forecast is accumulated tbe first 24 hours of the
forecast, making the effective lead time of the forecast shorter.

Comparing the evolution of the SEDI score for three different percent@@t, 80th and 98th), we
found that SEDI for the 98th percentile has improved more over the pa&ak8 than the 50th and 80th
percentile. This indicates that forecasting extremes have benefitted everfrom improvements in the
forecast system (data assimilation and model) than the forecasting of nevegjaweather.

We have also compared PEV for forecasts from different centresfoWwel for precipitation and the
deterministic models, that UKMO had higher PEV for low cost/loss ratios, whils1¥E had higher
PEV for high cost-loss ratios. This characteristic can be traced backf¢éoetif frequency biases. The
PEV is a hedgable score, and overforecasting an event (positiyédiagourable at low cost/loss ratios
while underforecsting is beneficial at high cost/loss ratios.

As PEV is hedgeable (not a proper score), it is not suitable for use wtitiy additional score. The
strenght of the score is that it demostrates the usefulness of the fidwadiferent types of applications.
The SEDI score would also be hedgeable if one would not apply a biesction. Used on calibrated
forecasts it becomes a score for potential skill and does not contaimiafion about systematic over-
or underforecasting. So for both scores the frequency bias is assgeand useful complement. Ideally
one would like to have a score which does not degenerate for extremis evel at the same time is not
hedgeable.
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Good predictability at longer lead times for temperature is expected as it iec®@ahto large-scale
patterns. Future work will focus on predictability of heat waves and qoédls which are events that
appears over extended periods (verification of several days togethfanterest).

In the time-series of the difference in SEDI between HRES and ERA-I welsst some of the evolution
in difference (especially for day 7), were apparently dependent®oliberved frequency of the event.
For periods with a higher than normal frequency, the 7-day forecested better compared to ERA-I.
One could ask the question whether this is a property of the score or whistgHeRES model is a better
model under such circumstances.

Except from the removal of frequency bias used for the SEDI saeeehave not attempted to do any
calibration. We expect that a more sophisticated calibration will improve tleedst skill. This could
be done by using the reforecast data set. Ongoing work at ECMWF wilbexthis topic.

In this report we have focused on scores based on hit and false edtgsn Future work will include
more probabilistic verification. One possibility here is to use a modified versithe @ontinuous ranked
probability score (CRPS), where a function is applied to give more weighttteme events.

Finally, we acknowledge that for many places and parameters the 98#nfiercan not be classified
as severe. For really extreme/severe events (with return periods ofymaars), we believe that one has
to look into specific cases to investigate the model characteristics. Hopesiutly,case studies would
bring more general model issues to light.
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