Insights into the Hydrological Cycle Revealed by GPS RO & its future cousin, ATOMMS

> A. Kursinski¹, T. Gebhardt², C. Ao³ (JPL), D. Ward⁴, A. Otarola⁵, H. Reed², D. Erickson² & J. McGhee¹

> > ¹ MOOG Advanced Missions & Science, Golden, CO
> > ² University of Colorado, Boulder, CO
> > ³ Jet Propulsion Laboratory (JPL), Pasadena, CA
> > ⁴ University of Arizona, Tucson, AZ
> > ⁵ Thirty Meter Telescope (TMT), Pasadena, CA

Background on GPS RO water vapor

• Moisture histograms & comparisons

• ENSO signatures

Water Vapor

- -Most important greenhouse gas
- Controlled by thermodynamics & dynamics
- Also drives dynamics
- Tied closely to clouds & precipitation

Clouds:

Poorly understood, critical player in energy balance

Precipitation:

- Determines extent/type of continental biosphere
- Vertical energy transport in the atmosphere

Many concerns about climate change are water related

- Water vapor concentrations will increase
- Changes in clouds are uncertain even in sign
- Continental ice melting
- Snow pack reduction:
- More extreme weather, hurricane intensity increase
- Increase in intensity of extreme rainfall
- BUT time between rain events will also increase

 \Rightarrow Need to predict flash floods

• Soil moisture

GNSS RO Information vs. Altitude

Altitude (km)

What does GNSS RO offer?

$$N = a_1 \frac{P}{T} + \left(a_2 \frac{P_w}{T^2}\right) + 40.3 \times 10^6 \frac{n_e}{f^2}$$
$$\alpha = \int d\alpha - 2a \int_{r_e}^{\infty} dr \frac{dn}{n \, dr} \frac{1}{\sqrt{n^2 r^2 - a^2}}$$

Bending angle particularly sensitive to water vapor

- Horizontal resolution is somewhat coarse (100-250 km)

Avoid super-refraction problem for the moment

• Will show there is a great deal of untapped, precise & unique information about water vapor in these RO data

GPS RO Features Summary

- Global coverage
- Diurnal coverage with \geq 6 satellite constellation like COSMIC
- Works in clear and cloudy conditions ($\lambda \sim 20$ cm)
- Works over land and water
- Unique relation between bending angle & refractivity (except super-N) insensitive to initial guess

- Useful to ~240 K level in troposphere
- Extends down very close to surface in extratropics
- If we can deal with , profiles can extend down to the surface at low latitudes

Zonal Mean Relative Humidity

Free Tropospheric PW from COSMIC

NWP Impact

- Global, all-weather sampling
- Uniquely high vertical resolution
- -~0.2 g/kg 1-sigma,
- |bias| < 0.03 g/kg

EDA Spread Reduction (%) for Relative Humidity Analysis

Absolute humidity impact at altitudes below 300 hPa level

Early Prediction of RO Impact on NWP Humidity

• 1DVar using refractivity

NWP Impact

 Moisture climatology of NCEP does not match that observed by GPS RO

• Assimilation of moisture observations will not work optimally until NWP model moisture climatology matches that of the observations.

 GNSS RO sampling should increase with time as new transmitter & receiver constellations come on line

Estimated Impact of PlanetIQ

linear

Moisture Histograms

 Histograms of moisture on individual pressure levels provide much better indication of full range of behavior

Low Latitude Moisture Study

Mixing & diffusion compress distribution toward its center

tracer

2000 km Stratosphere Last Extra-tropical Upper (300-100 hPa) subsidence horizontal saturation dehydration isentropic mixina Mid (700-300 hPa) 16 km isentropic MOIST DRY mixing Entrainment Detrainment Local Troposphere Low (850-700 hPa) moistening Boundary evaporation layer Local evaporation

Subtropics

clouds & precipitation

Tropics

Dessler & Minschwaner 2007 compared advection-saturation model results & AIRS

• **PROBLEM:**

What's going on?

GPS vs. Adv. Sat. & AIRS (Dessler)

• Largest discrepancies caused by an **annual average taken in each grid cell** by DM07 before calculating AIRS and Adv. Sat. histograms

- Undesirable when trying to constrain & understand the processes at work

Two Methods for Extracting Water Vapor from GPS RO Refractivity Profiles

• Direct Method: $N_{wet} = N_{tot} - N_{dry}$

• (1D) Variational Method

Advantage of Direct Method

Negative q and Error Deconvolution

Produces an unphysical, negative tail in the *q* histograms

- Linearize error model: $q_{measured} = q_{true} + \varepsilon_q$
- Measured histogram (PDF) is then the convolution of the true PDF and the error PDF

\otimes

- Negative tail tells us shape of the error distribution

Automated, Error Deconvolution Low Latitude

(1)

• Convolve them to generate estimate of "measured" PDF,

How dry is the driest air at 346 hPa?

Low Latitude Moisture Study

• Mixing & diffusion compress distribution toward its center

tracer

Subtropics

clouds & precipitation

Tropics

Automated, Error Deconvolution Low Latitude

Estimating the Accuracy of GPS-derived Water Vapor

$$\sigma_q = \left((C+q)^2 \left(\frac{\sigma_N}{N}\right)^2 + (C+2q)^2 \left(\frac{\sigma_T}{T}\right)^2 + (C+q)^2 \left(\frac{\sigma_{P_s}}{P_s}\right)^2 \right)^{1/2}$$

 $\sigma_q \sim 0.2$ g/kg in mid & upper troposphere. $\sigma_q \sim 0.5$ g/kg in lower troposphere

$$\sigma_{U} = \left[\left(B_{s} + U \right)^{2} \frac{\sigma_{N}^{2}}{N^{2}} + \left(B_{s} + U \left(2 - \frac{L}{R_{v} T} \right) \right)^{2} \frac{\sigma_{T}^{2}}{T^{2}} + B_{s}^{2} \frac{\sigma_{P}^{2}}{P^{2}} \right]^{1/2} \right]^{1/2}$$

Separating the Errors

 Resulting errors somewhat smaller than predictions of Kursinski & Hajj, 2001

	Specific Humidity Error (g/kg)		Fractional Refractivity Error (%)		Temperature Error (K)		Reference Pressure Error (%)	
Pressure level (hPa)	KH01	Error deconv	KH01	Error deconv	KH01	Error deconv	KH01	Error deconv
346	0.24	0.14	0.2	0.2	1.5K	0.9K	0.3%	0.15%
547	0.31	0.25	0.5	0.6	1.5K	0.9K	0.3%	0.15%
725	0.47	0.39	0.9	1	1.5K	0.9K	0.3%	0.15%

EDA Spread Reduction (%) for Relative Humidity Analysis

• Absolute humidity impact below 300 hPa

ECMWF Hi-Res 547 hPa Spect Humidity Comparisons

Olde 547 hPa Specific Humidity Comparisons

Comparison with CMIP 3 & 5 models

- NCAR and MPI in particular

(MIROC 5 has highest resolution)

Comparison with Advection- Saturation Model

 Initial moisture in air parcel from AIRS

 Advect parcel according to NCEP wind analyses

 Limit mixing ratio to the minimum saturation mixing ratio encountered along trajectory

Adv-Sat Model's peak at the wet end is not observed

Olde 346 hPa Specific Humidity 30S-30N 2007

346 hPa Specific Humidity 30S-30N 2007

Comparison of Estimates of Low Latitude Humidity Means

- Specific humidity: 30S-30N annual averages
- Means

	GPS	AIRS	ECWMF lo-res	ECMWF hi-res	NCEP	Sat-Adv
346 mb	0.437	0.397	0.448	0.448	0.496	0.456
547 mb	2.22	2.12	2.29	2.14	1.98	2.51

Fractional Differences Relative to GPS RO

	GPS	AIRS	ECWMF	NCEP	Sat-Adv
346 mb	0.0%	-9.1%	2.5%	13.5%	4.3%
547 mb	0.0%	-4.6%	3.2%	-10.8%	13.1%

Lots more going on than is captured in the means

 Sherwood et al. found ~half the climate sensitivity variance across 43 climate models is associated with convective mixing between lower & mid-troposphere.

Tropics

Subtropics

\Rightarrow Reduces low cloud cover

\Rightarrow Results imply a climate sensitivity > 3°C for CO₂ doubling.

\Rightarrow Relatively severe future warming

GPS RO v. AIRS: 725 hPa Specific Humidity

- Data sets that most influence moisture analyses are passive microwave & IR
- Passive microwave has very limited vertical resolution
- AIRS ~2 km vertical resolution still coarse & limited ability to penetrate thru clouds
- \Rightarrow Passive data provides limited constraints on lower to mid troposphere mixing

GPS RO v. ECMWF Hi-res: 725 hPa Specific Humidity

Climate Model Comparison at 725 mb

GPS RO 725 hPa Specific Humidity

GPS RO 725 hPa Relative Humidity

AIRS 725 hPa Relative Humidity

Tropics

Subtropics

Tropics

Subtropics

GPS RO 725 hPa Specific Humidity

ECMWF 725 hPa Specific Humidity

ECMWF-COSMIC 725 hPa Specific Humidity

ECMWF-COSMIC 725 hPa Specific Humidity

PROBLEM with Sherwood et al. conclusion:

• Other than GPS RO, tropical observational constraints on water vapor just above PBL are limited.

⇒ Comparison of GCMs with MERRA analyses just above the PBL is more of a model-to-model comparison than an observation-to-model comparison

346 mb Relative Humidity Histogram

Estimating the Accuracy of GPS-derived Water Vapor

$$\sigma_q = \left((C+q)^2 \left(\frac{\sigma_N}{N}\right)^2 + (C+2q)^2 \left(\frac{\sigma_T}{T}\right)^2 + (C+q)^2 \left(\frac{\sigma_{P_s}}{P_s}\right)^2 \right)^{1/2}$$

 $\sigma_q \sim 0.2$ g/kg in mid & upper troposphere. $\sigma_q \sim 0.5$ g/kg in lower troposphere

$$\sigma_{U} = \left[\left(B_{s} + U \right)^{2} \frac{\sigma_{N}^{2}}{N^{2}} + \left(B_{s} + U \left(2 - \frac{L}{R_{v} T} \right) \right)^{2} \frac{\sigma_{T}^{2}}{T^{2}} + B_{s}^{2} \frac{\sigma_{P}^{2}}{P^{2}} \right]^{1/2} \right]^{1/2}$$

Driest air PDFs January 2007 minus 2008

-50

-40

-30

-20

-10

0

20

10

30

50

40

GPS vs AIRS Fractional ARH vs. Altitude

- Similar patterns
- GPS is larger by x2-3

Future cm & mm Wavelength **Occultation System:** Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS)

ATOMMS Overview

- Profile both speed of light and absorption of light

• Works in clear air and clouds

 \Rightarrow Cross between GPS RO & MLS

Precision of Individual Water Vapor Profiles

Fractional RMS water v apor error

Precision of Individual Temperature Profiles

Near-Surface Precision with 3, 22 & 183 GHz tones

Water Vapor Retrievals: Clear, Cloudy & Rain

- Enabled by calibration tone at 198 GHz
- Figures show spectrum of amplitude ratios relative to calibration tone

