

ADVECTION OVER STEEP SLOPES

James Shaw @hertzsprrrung Hilary Weller @hilaryweller0 John Methven Terry Davies

WAYS TO REPRESENT TERRAIN

Source: Smolarkiewicz & Szmelter

http://ral.ucar.edu/hap/events/orographic-precip/images/2wed/am/day2-Wed_am_3-Orogunmesh2.ppt

SLANTED CELLS

SLANTED CELLS

CUT CELLS

SLANTED CELLS

Source: Shaw & Weller 2016, MWR, dx.doi.org/10.1175/MWR-D-15-0226.1

SLANTED CELLS

- Easy to construct
- Avoid arbitrarily small cells
- Generalise to 3D with arbitrary horizontal meshes

CUBICFIT: AN ADVECTION SCHEME FOR STEEP SLOPES

CUBICFIT: AN ADVECTION SCHEME FOR STEEP SLOPES

- Finite volume
- Eulerian
- Multidimensional cubic approximation
- Method-of-lines with Runge-Kutta timestepping
- No flux correction
- Not monotonic

FINITE VOLUME DISCRETISATION

$$\frac{\partial \Phi}{\partial t} + \nabla \cdot (\boldsymbol{u} \Phi) = 0$$

FINITE VOLUME DISCRETISATION

HOW TO ESTIMATE Φ_F ?

UPWIND-BIASED STENCIL

12

STENCIL-LOCAL COORDINATES

LEAST SQUARES FIT

 $\varphi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 x y^2$

Φ_{F} IS CHEAP TO COMPUTE $\phi_F = a_1 = \begin{vmatrix} W_1 & \phi_1 \\ W_2 & \phi_2 \\ \vdots & \vdots \\ W_{12} & \phi_{12} \end{vmatrix}$

 $\varphi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 x y^2$

$$\phi = a_1 + a_2 x + a_3 y$$

$$\phi = a_1 + a_2 x + a_3 y + a_4 x^2$$

 $\phi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 x y^2$

 $\phi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 y^2 + a_6 x y^2$

 $\phi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 x y^2$

 $\phi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^2 + a_8 x^2 y + a_9 x y^2$

What is the most suitable polynomial for a given distribution of points?

What is the highest degree polynomial that ensures numerically stable advection?

 $\rightarrow u$

 $\begin{array}{ccc} \phi_L & \phi_R \\ & & & \\ \hline \phi_{j-1} & \phi_j & \phi_{j+1} \end{array} \end{array} x$

$$\frac{\partial \phi_j^{(n)}}{\partial t} = -u \frac{\phi_R - \phi_L}{\Delta x}$$

$$\phi_L = W_u \phi_{j-1} + W_d \phi_j$$
$$\phi_R = W_u \phi_j + W_d \phi_{j+1}$$

$$\begin{split} \varphi_L &= W_U \varphi_{j-1} + W_d \varphi_j \\ \varphi_R &= W_U \varphi_j + W_d \varphi_{j+1} \end{split}$$

Assume perfect timestepping

 $\phi_L = W_U \phi_{j-1} + W_d \phi_j$ $\phi_R = W_U \phi_j + W_d \phi_{j+1}$

- Assume perfect timestepping Assume wave-like solution $\Phi_i^{(n)} = A^n e^{ijk\Delta x}$

$$\begin{split} \varphi_L &= W_U \varphi_{j-1} + W_d \varphi_j \\ \varphi_R &= W_U \varphi_j + W_d \varphi_{j+1} \end{split}$$

- Assume perfect timestepping
- Assume wave-like solution $\phi_i^{(n)} = A^n e^{ijk\Delta x}$
- Introduce constraints:
 - |A| <= 1

$$\begin{split} \varphi_L &= W_U \varphi_{j-1} + W_d \varphi_j \\ \varphi_R &= W_U \varphi_j + W_d \varphi_{j+1} \end{split}$$

- Assume perfect timestepping
- Assume wave-like solution $\phi_{i}^{(n)} = A^{n} e^{ijk\Delta x}$
- Introduce constraints:
 - |A| <= 1
 - arg(A) < 0 for Co > 0

$$\begin{split} \varphi_L &= W_U \varphi_{j-1} + W_d \varphi_j \\ \varphi_R &= W_U \varphi_j + W_d \varphi_{j+1} \end{split}$$

- Assume perfect timestepping
- Assume wave-like solution $\phi_{i}^{(n)} = A^{n} e^{ijk\Delta x}$
- Introduce constraints:
 - |A| <= 1
 - arg(A) < 0 for Co > 0
 - No more damping than first-order upwind (w_u =1, w_d =0)

2-point approximation

2-point approximation

$$\begin{split} \varphi_L &= W_u \varphi_{j-1} + W_d \varphi_j \\ \varphi_R &= W_u \varphi_j + W_d \varphi_{j+1} \end{split}$$

3-point approximation

$$\varphi_L = W_{uu} \varphi_{j-2} + W_u \varphi_{j-1} + W_d \varphi_j$$
$$\varphi_R = W_{uu} \varphi_{j-1} + W_u \varphi_j + W_d \varphi_{j+1}$$

4-point approximation

$$\varphi_L = W_{uuu} \varphi_{j-3} + W_{uu} \varphi_{j-2} + W_u \varphi_{j-1} + W_d \varphi_j$$

$$\varphi_R = W_{uuu} \varphi_{j-2} + W_{uu} \varphi_{j-1} + W_u \varphi_j + W_d \varphi_{j+1}$$

 $0.5 \le w_u \le 1$ $0 \le w_d \le 0.5$ $w_u - w_d \ge \max_{p \in P}(|w_p|)$

POLYNOMIAL FIT ALGORITHM Strain Content of Reading

- 1. Generate candidate polynomials
- 2. Test each candidate against von Neumann stability criteria
- 3. Choose the best candidate that satisfies the criteria

$$\varphi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 x y^2$$

$$\varphi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x^2 y$$

$$\varphi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x y^2$$

$$\varphi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^2 y + a_8 x y^2$$

$$\vdots$$

$$\varphi = a_1 + a_2 x + a_3 y$$

$$0.5 < W_{44} < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0$$

$$\begin{array}{l} \varphi = a_{1} + a_{2}x + a_{3}y \\ \varphi = a_{1} + a_{2}x + a_{3}x^{2} \\ \varphi = a_{1} + a_{2}y + a_{3}y^{2} \\ \varphi = a_{1} + a_{2}x \\ \varphi = a_{1} + a_{2}y \end{array} \qquad \begin{array}{l} 0.5 \leq w_{u} \leq 1 \\ 0 \leq w_{d} \leq 0.5 \\ W_{u} - W_{d} \geq \max(|w_{p}|) \\ p \in P(|w_{p}|) \end{array}$$

ESTIMATING Φ_F NEAR BOUNDARIES x**∧**/Uf ΦF $\phi = a_1 + a_2 x + a_3 y + a_4 x y + a_5 x^2 + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 x y^2$

x

ESTIMATING Φ_F NEAR BOUNDARIES

′**∧**/Uf

φ_F

NUMERICAL EXPERIMENTS

- 1. Schär horizontal advection over orography
- 2. "Slug" advection over orography

NUMERICAL EXPERIMENTS

- 1. Schär horizontal advection over orography
- 2. "Slug" advection over orography

Compare

- cubicFit
- linearUpwind

SCHÄR HORIZONTAL ADVECTION

Horizontal wind profile, surface terrain profile and initial tracer Adapted from Schär et al. 2002, MWR

BASIC TERRAIN FOLLOWING

CUT CELLS

linearUpwind

"SLUG" ADVECTION TEST

BASIC TERRAIN FOLLOWING

CUT CELLS

linearUpwind

SLANTED CELLS

"SLUG" ADVECTION TIMESTEPS

MAXIMUM TIMESTEPS

CONCLUSIONS

- cubicFit is cheap to compute (dot product of two vectors)
- cubicFit is suitable for many types of mesh
- Maximum timesteps on slanted cells scale predictably with mesh spacing

FUTURE WORK

Contact me: @hertzsprrrung or js102@zepler.net Slides and additional resources: goo.gl/jLR7vW

