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WAYS TO REPRESENT TERRAIN
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Source: Smolarkiewicz & Szmelter
http://ral.ucar.edu/hap/events/orographic-precip/images/2wed/am/day2-Wed_am_3-Orogunmesh2.ppt
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SLANTED CELLS
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SLANTED CELLS
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Before After



CUT CELLS

Source: Shaw & Weller 2016, MWR, dx.doi.org/10.1175/MWR-D-15-0226.1
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SLANTED CELLS



SLANTED CELLS

• Easy to construct

• Avoid arbitrarily small cells

• Generalise to 3D with arbitrary horizontal meshes
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CUBICFIT: AN ADVECTION
SCHEME FOR STEEP SLOPES
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CUBICFIT: AN ADVECTION
SCHEME FOR STEEP SLOPES

• Finite volume

• Eulerian

• Multidimensional cubic approximation

• Method-of-lines with Runge-Kutta timestepping

• No flux correction

• Not monotonic
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FINITE VOLUME DISCRETISATION
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FINITE VOLUME DISCRETISATION
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HOW TO ESTIMATEΦF?
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UPWIND-BIASED STENCIL
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STENCIL-LOCAL COORDINATES
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LEAST SQUARES FIT
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ΦF IS CHEAP TO COMPUTE
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ESTIMATINGΦF NEAR BOUNDARIES
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ESTIMATINGΦF NEAR BOUNDARIES
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ESTIMATINGΦF NEAR BOUNDARIES
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ESTIMATINGΦF NEAR BOUNDARIES
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ESTIMATINGΦF NEAR BOUNDARIES
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What is the most suitable polynomial

for a given distribution of points?
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What is the highest degree polynomial

that ensures numerically stable advection?

25



VON NEUMANN STABILITY
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VON NEUMANN STABILITY
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• Assume perfect timestepping
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• Assume perfect timestepping

• Assume wave-like solution 

29

VON NEUMANN STABILITY



• Assume perfect timestepping

• Assume wave-like solution 

• Introduce constraints:

• |A| <= 1

30

VON NEUMANN STABILITY



• Assume perfect timestepping

• Assume wave-like solution 

• Introduce constraints:

• |A| <= 1

• arg(A) < 0 for Co > 0
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VON NEUMANN STABILITY



• Assume perfect timestepping

• Assume wave-like solution 

• Introduce constraints:

• |A| <= 1

• arg(A) < 0 for Co > 0

• No more damping than first-order upwind (wu=1, wd=0)
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VON NEUMANN STABILITY



VON NEUMANN STABILITY
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2-point approximation



VON NEUMANN STABILITY
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2-point approximation

3-point approximation

4-point approximation



VON NEUMANN STABILITY
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POLYNOMIAL FIT ALGORITHM

1. Generate candidate polynomials

2. Test each candidate against von Neumann stability criteria

3. Choose the best candidate that satisfies the criteria
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ESTIMATINGΦF NEAR BOUNDARIES

37

?



ESTIMATINGΦF NEAR BOUNDARIES
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NUMERICAL EXPERIMENTS
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1. Schär horizontal advection over orography

2. “Slug” advection over orography



NUMERICAL EXPERIMENTS
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1. Schär horizontal advection over orography

2. “Slug” advection over orography

Compare

• cubicFit

• linearUpwind



SCHÄR HORIZONTAL ADVECTION
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Horizontal wind profile, surface terrain profile and initial tracer  
Adapted from Schär et al. 2002, MWR
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linearUpwind

cubicFit

BASIC TERRAIN FOLLOWING
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linearUpwind

cubicFit

CUT CELLS



“SLUG” ADVECTION TEST

• Animation

44



BASIC TERRAIN FOLLOWING
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linearUpwind

cubicFit



CUT CELLS
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linearUpwind

cubicFit



SLANTED CELLS
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linearUpwind

cubicFit



“SLUG” ADVECTION TIMESTEPS

48



MAXIMUM TIMESTEPS
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CONCLUSIONS
• cubicFit is cheap to compute (dot product of two vectors)

• cubicFit is suitable for many types of mesh

• Maximum timesteps on slanted cells scale predictably with mesh spacing
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FUTURE WORK

Contact me: @hertzsprrrung or js102@zepler.net

Slides and additional resources: goo.gl/jLR7vW


