

Canada

Model Error Representation in the Canadian Ensemble Prediction Systems

Leo Separovic¹, Martin Charron¹, Amin Erfani², Normand Gagnon², Ayrton Zadra¹ and Paul Vaillancourt¹

¹Recherche en Prévision Numérique Atmosphérique, Meteorological Research Division, Environment and Climate Change Canada, Dorval, Canada

> ²Meteorological Service of Canada, Environment and Climate Change Canada, Dorval, Quebec, Canada

2016 ECMWF/WWRP Workshop: Model Uncertainty, Reading, UK

Outline

- Current error sampling practices at Meteorological Service of Canada
 - Data Assimilation with Ensemble Kalman Filter (EnKF)
 - Ensemble Prediction based on
 - Multi-parameterization approach
 - Stochastic physical tendency perturbations (PTP)
 - Stochastic kinetic energy backscatter scheme (SKEB)
- Ongoing work on a stochastic deep convection scheme
 - Modification of the Bechtold scheme (Bechtold *et al.*, 2001) to include stochastic component
 - Approach based on the Plant-Craig scheme (Plant and Craig, 2008).

Data assimilation (EnKF)

Global Ensemble Prediction System (GEPS)

- System configuration:
 - **21** members (one control and 20 perturbed).
 - GEM dynamical core
 - A 0.45° (~50 km at the equator) global uniform grid, 40 vertical levels
 - 16-day integrations (32 days once a week).
- Model error representation:
 - Initial conditions: selection of 20 out of the 256 EnKF perturbed analyses to initialize GEPS members.
 - PTP (Buizza *et al.* 1999; Charron *et al.* 2010) disabled if deep convection is active
 - SKEB scheme (Shutts, 2005)
 - Multi-physics approach.

Regional Ensemble Prediction System (REPS)

- System configuration:
 - 21 members
 - GEM dynamical core
 - A ~15 km limited-area grid over N. America, 48 vertical levels
 - Lateral boundary conditions updated hourly from GEPS
 - 72-hr integrations.
- Model error representation:
 - Initial conditions: Interpolated global analyses
 - Lateral boundary conditions: 21 GEPS members
 - PTP

Canada

no SKEB, no multi-physics.

GEPS physics configurations

No	Convection	Gravity wave	Mixing	Vertical	Orographic	Deacu	Salty	SKEB	РТР
10		drag	length	Diffusion	blocking	ZOT	QSAT		
0	Kain&Fritsch	Standard	Bougeault	1.0	1.0	Yes	Yes	No	No
1	Kain&Fritsch	Strong	Blackadar	1.0	1.5	Yes	No	Yes	Yes
2	Kuo	Strong	Blackadar	1.0	0.5	No	No	Yes	Yes
3	Kain&Fritsch	Weak	Bougeault	0.85	0.5	Yes	Yes	Yes	Yes
4	Kuo	Weak	Bougeault	0.85	0.5	No	No	Yes	Yes
5	Kain&Fritsch	Weak	Blackadar	1.0	1.5	No	No	Yes	Yes
6	Kuo	Weak	Blackadar	1.0	0.5	Yes	Yes	Yes	Yes
7	Kain&Fritsch	Weak	Bougeault	1.0	1.5	No	Yes	Yes	Yes
8	Kuo	Weak	Bougeault	1.0	0.5	No	Yes	Yes	Yes
9	Kain&Fritsch	Strong	Bougeault	1.0	1.5	Yes	Yes	Yes	Yes
10	Kuo	Strong	Bougeault	1.0	0.5	No	Yes	Yes	Yes
11	Kain&Fritsch	Strong	Bougeault	0.85	1.5	No	No	Yes	Yes
12	Kuo	Strong	Bougeault	0.85	0.5	No	No	Yes	Yes
13	Kain&Fritsch	Weak	Blackadar	0.85	1.5	Yes	No	Yes	Yes
14	Kuo	Weak	Blackadar	0.85	0.5	Yes	Yes	Yes	Yes
15	Kain&Fritsch	Strong	Blackadar	0.85	1.5	Yes	Yes	Yes	Yes
16	Kuo	Strong	Blackadar	0.85	0.5	No	Yes	Yes	Yes
17	Kain&Fritsch	Strong	Blackadar	1.0	0.5	No	No	Yes	Yes
18	Kuo	Strong	Blackadar	1.0	1.5	No	Yes	Yes	Yes
19	Kain&Fritsch	Weak	Bougeault	0.85	1.5	No	No	Yes	Yes
20	Kuo	Weak	Bougeault	0.85	0.5	No	Yes	Yes	Yes
Environment Environnement Canada Canada Canada									anada

Canada

EnKF physics configurations

No	Convection	Gravity wave	Mixing	Vertical	Orographic	Deacu	Salty	SKEB	РТР		
•		drag	length	Diffusion	blocking	ZOT	QSAT				
0	Kain&Fritsch	Standard	Bougeault	1.0	1.0	Yes	Yes	No	No		
1	Kain&Fritsch	Strong	Blackadar	1.0	1.5	Yes	No	Yes	Yes		
2	Kuo	Strong	Blackadar	1.0	0.5	No	No	Yes	Yes		
3	Kain&Fritsch	Weak	Bougeault	0.85	0.5	Yes	Yes	Yes	Yes		
4	Kuo	Weak	Bougeault	0.85	0.5	No	No	Yes	Yes		
5	Kain&Fritsch	Weak	Blackadar	1.0	1.5	No	No	Yes	Yes		
6	Kuo	Weak	Blackadar	1.0	0.5	Yes	Yes	Yes	Yes		
7	Kain&Fritsch	Weak	Bougeault	1.0	1.5	No	Yes	Yes	Yes		
8	Kuo	Weak	Bougeault	1.0	0.5	No	Yes	Yes	Yes		
9	Kain&Fritsch	Strong	Bougeault	1.0	1.5	Yes	Yes	Yes	Yes		
10	Kuo	Strong	Bougeault	1.0	0.5	No	Yes	Yes	Yes		
11	Kain&Fritsch	Strong	Bougeault	0.85	1.5	No	No	Yes	Yes		
12	Kuo	Strong	Bougeault	0.85	0.5	No	No	Yes	Yes		
13	Kain&Fritsch	Weak	Blackadar	0.85	1.5	Yes	No	Yes	Yes		
14	Kuo	Weak	Blackadar	0.85	0.5	Yes	Yes	Yes	Yes		
15	Kain&Fritsch	Strong	Blackadar	0.85	1.5	Yes	Yes	Yes	Yes		
16	Kuo	Strong	Blackadar	0.85	0.5	No	Yes	Yes	Yes		
17	Kain&Fritsch	Strong	Blackadar	1.0	0.5	No	No	Yes	Yes		
18	Kuo	Strong	Blackadar	1.0	1.5	No	Yes	Yes	Yes		
19	Kain&Fritsch	Weak	Bougeault	0.85	1.5	No	No	Yes	Yes		
20	Kuo	Weak	Bougeault	0.85	0.5	No	Yes	Yes	Yes		
	Environment Environnement Canada Canada								Canada		

GEPS performance

GEPS generally places well as compared to other centres:

Canada

REPS vs. GEPS performance

GEPS performance

 Bimodality in T-250mb in the tropics due to the use of two deep-convection schemes:

GEPS performance

 Contribution of the system subcomponents to ensemble spread for NH 500mb height:

Stochastic Deep Convection Scheme

- Current scheme is based on the Plant-Craig (PC) stochastic deep convection parameterization (Plant and Craig, 2008).
- The cloud model is however adopted from the **Bechtold scheme**:
 - A bulk mass flux convection parameterization
 - Modular structure
 - Consistent deep and shallow convection representation.
- Two principal modifications to the Bechtold scheme:
 - <u>Closure modification</u>: calculate tendency based on the weighted-average plume properties (*still deterministic*)
 - <u>Plume random generation</u>: draw plumes from the size distribution (stochastic component to the scheme).

Plant-Craig scheme

• Exponential distribution of cloud-base mass flux of subgrid-scale plumes: $1 \qquad (m)$

$$p(m) = \frac{1}{\langle m \rangle} \exp\left(-\frac{m}{\langle m \rangle}\right)$$

where < > denotes the expected value and <m> is a tunable parameter.

• **Constant vertical velocity** at the cloud base:

 $m = \langle m \rangle r^2 / \langle r^2 \rangle$

• PDF of the cloud radius at the LCL follows (Plant and Craig, 2008):

Plant-Craig scheme

 Plume sampling function – on average <N> plumes is generated during the specified cloud life time T:

$$p(r)dr = \sqrt{\frac{\Delta t}{T}} \frac{2r}{\langle r^2 \rangle} \exp\left(-\frac{r^2}{\langle r^2 \rangle}\right) dr$$

 Mean number of plumes <N> is calculated from the net grid-area updraft mass flux <M> and the expected individual updraft mass flux <m> at the LCL, as

$$\langle N \rangle = \langle M \rangle / \langle m \rangle$$

 Net grid-area mass flux <M> is obtained from closure assumptions in the deep-convection scheme.

Modification of Bechtold Deep Convection Scheme

Application in REPS

REPS 2014-07-10-00 CONTROL MEMBER: 00-24h convective precipitation accumulation [mm/day]

Canada

Application in REPS

REPS 2014-07-10-00 CONTROL MEMBER: 00-24h convective • precipitation accumulation [mm/day]

Canada

Application in REPS

REPS 2014-07-10-00 CONTROL MEMBER: 00-24h TOTAL precipitation accumulation [mm/day]

Canada

Net grid-area updraft mass flux distribution

Resulting grid-scale cloud-base updraft mass flux PDF for average number of clouds: (a) <N>=68 and (b) <N>=5

• Can model try to substitute the deep convection scheme with a "grid-scale" storm"?

Canada

Summary

- GEPS and REPS in general place well, compared to other centres.
- Multi-physics approach
 - has relatively small impact on the spread in GEPS
 - bimodality not correlated with uncertainty in the forecast.
- So far, rather moderate expectations from the stochastic deep convection approach
 - expected to add fine-scale variability to precipitation and near-surface fields and increase the spread
 - far from substituting PTP.
- Future work
 - stochastic shallow convection in the Bechtold scheme
 - other schemes (e.g., boundary layer, gravity wave drag).

Impact of Inconsistencies in Discretizations

- Inconsistencies between the Semi-Lagrangian advection and trajectory calculations:
 - Mid-point -> Trapezoidal rule in trajectory calculations
 - Linear -> cubic interpolation in the calculations for departing positions.

Stochastic perturbations in the EnKF

• Approaches to model error simulation, such as PTP and SKEB, are costly but have a small contribution to ensemble spread in the EnKF context:

EnKF - 4D assimilation cycle

REPS vs. GEPS

At the surface REPS does not improve the RMSE/SPREAD ratio. Space for improvement:

- no perturbations of landsurface fields

- uniform observation error statistics

