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Outline

• Current error sampling practices at Meteorological Service of 

Canada

– Data Assimilation with Ensemble Kalman Filter (EnKF)

– Ensemble Prediction based on

▪ Multi-parameterization approach

▪ Stochastic physical tendency perturbations (PTP)

▪ Stochastic kinetic energy backscatter scheme (SKEB)

• Ongoing work on a stochastic deep convection scheme

- Modification of the Bechtold scheme (Bechtold et al., 2001) to include 

stochastic component

- Approach based on the Plant-Craig scheme (Plant and Craig, 2008).
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Global Ensemble Prediction System 

(GEPS)

• System configuration:

– 21 members (one control and 20 perturbed).

– GEM dynamical core

– A 0.45º (~50 km at the equator) global uniform grid, 40 vertical levels

– 16-day integrations (32 days once a week).

• Model error representation:

– Initial conditions: selection of 20 out of the 256 EnKF perturbed 

analyses to initialize GEPS members.

– PTP (Buizza et al. 1999; Charron et al. 2010) disabled if deep 

convection is active 

– SKEB scheme (Shutts, 2005)

– Multi-physics approach.



Regional Ensemble Prediction System 

(REPS)

• System configuration:

– 21 members

– GEM dynamical core

– A ~15 km limited-area grid over N. America, 48 vertical levels

– Lateral boundary conditions updated hourly from GEPS

– 72-hr integrations.

• Model error representation:

– Initial conditions: Interpolated global analyses

– Lateral boundary conditions: 21 GEPS members

– PTP

– no SKEB, no multi-physics.
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Convection Gravity wave 

drag

Mixing 

length

Vertical

Diffusion

Orographic 

blocking
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Salty
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SKEB PTP

0 Kain&Fritsch Standard Bougeault 1.0 1.0 Yes Yes No No

1 Kain&Fritsch Strong Blackadar 1.0 1.5 Yes No Yes Yes

2 Kuo Strong Blackadar 1.0 0.5 No No Yes Yes

3 Kain&Fritsch Weak Bougeault 0.85 0.5 Yes Yes Yes Yes

4 Kuo Weak Bougeault 0.85 0.5 No No Yes Yes

5 Kain&Fritsch Weak Blackadar 1.0 1.5 No No Yes Yes

6 Kuo Weak Blackadar 1.0 0.5 Yes Yes Yes Yes

7 Kain&Fritsch Weak Bougeault 1.0 1.5 No Yes Yes Yes

8 Kuo Weak Bougeault 1.0 0.5 No Yes Yes Yes

9 Kain&Fritsch Strong Bougeault 1.0 1.5 Yes Yes Yes Yes

10 Kuo Strong Bougeault 1.0 0.5 No Yes Yes Yes

11 Kain&Fritsch Strong Bougeault 0.85 1.5 No No Yes Yes

12 Kuo Strong Bougeault 0.85 0.5 No No Yes Yes

13 Kain&Fritsch Weak Blackadar 0.85 1.5 Yes No Yes Yes

14 Kuo Weak Blackadar 0.85 0.5 Yes Yes Yes Yes

15 Kain&Fritsch Strong Blackadar 0.85 1.5 Yes Yes Yes Yes

16 Kuo Strong Blackadar 0.85 0.5 No Yes Yes Yes

17 Kain&Fritsch Strong Blackadar 1.0 0.5 No No Yes Yes

18 Kuo Strong Blackadar 1.0 1.5 No Yes Yes Yes

19 Kain&Fritsch Weak Bougeault 0.85 1.5 No No Yes Yes

20 Kuo Weak Bougeault 0.85 0.5 No Yes Yes Yes

GEPS physics configurations



No

.

Convection Gravity wave 

drag

Mixing 

length

Vertical

Diffusion

Orographic 

blocking

Deacu

Z0T

Salty

QSAT

SKEB PTP

0 Kain&Fritsch Standard Bougeault 1.0 1.0 Yes Yes No No

1 Kain&Fritsch Strong Blackadar 1.0 1.5 Yes No Yes Yes

2 Kuo Strong Blackadar 1.0 0.5 No No Yes Yes

3 Kain&Fritsch Weak Bougeault 0.85 0.5 Yes Yes Yes Yes

4 Kuo Weak Bougeault 0.85 0.5 No No Yes Yes

5 Kain&Fritsch Weak Blackadar 1.0 1.5 No No Yes Yes

6 Kuo Weak Blackadar 1.0 0.5 Yes Yes Yes Yes

7 Kain&Fritsch Weak Bougeault 1.0 1.5 No Yes Yes Yes

8 Kuo Weak Bougeault 1.0 0.5 No Yes Yes Yes

9 Kain&Fritsch Strong Bougeault 1.0 1.5 Yes Yes Yes Yes

10 Kuo Strong Bougeault 1.0 0.5 No Yes Yes Yes

11 Kain&Fritsch Strong Bougeault 0.85 1.5 No No Yes Yes

12 Kuo Strong Bougeault 0.85 0.5 No No Yes Yes

13 Kain&Fritsch Weak Blackadar 0.85 1.5 Yes No Yes Yes

14 Kuo Weak Blackadar 0.85 0.5 Yes Yes Yes Yes

15 Kain&Fritsch Strong Blackadar 0.85 1.5 Yes Yes Yes Yes

16 Kuo Strong Blackadar 0.85 0.5 No Yes Yes Yes
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EnKF physics configurations



GEPS performance

• GEPS generally places well as compared to other centres:



REPS vs. GEPS performance

500-hPa height

REPS has less 

spread

But also smaller 

RMSE 



GEPS performance

• Bimodality in T-250mb in the tropics due to the use of two deep-convection 

schemes:

Kuo

Kain-Fritsch



GEPS performance

• Contribution of the system subcomponents to ensemble spread for 

NH 500mb height:

OPS

”- init. cond.”

“- multi-phys.”

“- PTP” The impact of 

multi-physics is 

relatively small 

(poster of N. Gagnon)



Stochastic Deep Convection Scheme

• Current scheme is based on the Plant-Craig (PC) stochastic deep 

convection parameterization (Plant and Craig, 2008).  

• The cloud model is however adopted from the Bechtold scheme:

– A bulk mass flux convection parameterization

– Modular structure

– Consistent deep and shallow convection representation.

• Two principal modifications to the Bechtold scheme:

– Closure modification: calculate tendency based on the weighted-average 

plume properties (still deterministic)

– Plume random generation : draw plumes from the size distribution 

(stochastic component to the scheme).



Plant-Craig scheme 

• Exponential distribution of cloud-base mass flux of subgrid-scale 

plumes:

where < > denotes the expected value and <m> is a tunable  

parameter.

• Constant vertical velocity at the cloud base:

• PDF of the cloud radius at the LCL follows (Plant and Craig, 2008):
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• Plume sampling function – on average <N> plumes is generated 

during the specified cloud life time T: 

• Mean number of plumes <N> is calculated from the net grid-area 

updraft mass flux <M> and the expected individual updraft mass 

flux <m> at the LCL, as 

• Net grid-area mass flux <M> is obtained from closure

assumptions in the deep-convection scheme. 

Plant-Craig scheme 
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Modification of Bechtold 

Deep Convection Scheme



Application in REPS

• REPS 2014-07-10-00 CONTROL MEMBER: 00-24h convective 

precipitation accumulation [mm/day]

BECHTOLD SCHEME (DETERMINSTIC) BPC SCHEME (STOCHASTIC)



Application in REPS

• REPS 2014-07-10-00 CONTROL MEMBER: 00-24h convective 

precipitation accumulation [mm/day]

Difference BPC-BECHTOLDBECHTOLD SCHEME (DETERMINSTIC)



Application in REPS

• REPS 2014-07-10-00 CONTROL MEMBER: 00-24h TOTAL precipitation 

accumulation [mm/day]

BPC scheme: change RND SEED BPC scheme: PTP activated



Net grid-area updraft mass flux 

distribution

• Resulting grid-scale cloud-base updraft mass flux PDF for average 

number of clouds: (a) <N>=68 and (b) <N>=5 

Craig and Cohen (2006)

Finite probability of no cloud

regardless of grid-scale 

conditions 

~15 km~50 km

• Can model try to substitute the deep convection scheme with a “grid-scale 

storm”?



Summary

• GEPS and REPS in general place well, compared to other centres.

• Multi-physics approach

– has relatively small impact on the spread in GEPS

– bimodality - not correlated with uncertainty in the forecast.

• So far, rather moderate expectations from the stochastic deep 

convection approach

– expected to add fine-scale variability to precipitation and near-surface 

fields and increase the spread

– far from substituting PTP.

• Future work

– stochastic shallow convection in the Bechtold scheme

– other schemes (e.g., boundary layer, gravity wave drag). 



Impact of Inconsistencies in 

Discretizations

• Inconsistencies between the Semi-Lagrangian advection and trajectory 

calculations:

– Mid-point -> Trapezoidal rule in trajectory calculations

– Linear -> cubic interpolation in the calculations for departing positions.

return



Stochastic perturbations in the EnKF 

• Approaches to model error simulation, such as PTP and SKEB, are costly 

but have a small contribution to ensemble spread in the EnKF context:

Houtekamer et al. (2009)
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EnKF - 4D assimilation cycle

T=06Z

T=00Z
T=03Z T=09Z

3- to 9-h trial fields.

Interpolated at the observation time.

ObservationsObservations

Each observation is assimilated

at its time of validity.

N. Gagnon, CMC

Assimilation window – current version



REPS vs. GEPS

10-m wind spead

2-m temperature

At the surface REPS does 

not improve the 

RMSE/SPREAD ratio.

Space for improvement:
- no perturbations of land-

surface fields

- uniform observation error 

statistics


