

On the diagnosis of model error statistics using weak-constraint data assimilation

Neill Bowler

Thanks to: Mike Cullen, Mihai Popa-Matei, Stephen Pring

1024

Allow a small correction to the model trajectory every timestep

$$\mathbf{x}_i = \boldsymbol{M}_{i \leftarrow i-1} \big(\mathbf{x}_{i-1} \big) + \boldsymbol{\eta}_i$$

Make assumption about correlations in η_i

If perfectly correlated

$$\eta_i = \frac{\eta}{n}$$
 $n - \text{number of timesteps}$

Other assumptions are available

Assume model error is perfectly correlated within DA window

$$J(\delta \mathbf{x}, \eta) = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} \eta^T \mathbf{Q}^{-1} \eta$$

+ $\frac{1}{2} (\mathbf{y} - H(\underline{M}(\mathbf{x}_b)) - \mathbf{H} \underline{\mathbf{M}} \delta \mathbf{x} - \mathbf{H} \underline{\mathbf{N}} \eta)^T \mathbf{R}^{-1} (\mathbf{y} - H(\underline{M}(\mathbf{x}_b)) - \mathbf{H} \underline{\mathbf{M}} \delta \mathbf{x} - \mathbf{H} \underline{\mathbf{N}} \eta)$

$$\underline{M}(\mathbf{x}) = \begin{pmatrix} M_{0 \leftarrow 0}(\mathbf{x}) \\ M_{1 \leftarrow 0}(\mathbf{x}) \\ \vdots \\ M_{n \leftarrow 0}(\mathbf{x}) \end{pmatrix} \qquad \underline{\mathbf{N}} = \frac{1}{n} \begin{pmatrix} \mathbf{0} \\ \mathbf{M}_{1 \leftarrow 1} \\ \mathbf{M}_{2 \leftarrow 1} + \mathbf{M}_{2 \leftarrow 2} \\ \vdots \\ \sum_{i=1}^{n} \mathbf{M}_{n \leftarrow i} \end{pmatrix}$$

Assume model error is perfectly correlated within DA window

Using a Kalman filter formulation

$\delta \mathbf{x} = \mathbf{K}_b \mathbf{d}_b^o$	$\mathbf{K}_{b} = \mathbf{B}\underline{\mathbf{M}}^{T}\mathbf{H}^{T}\left(\mathbf{R} + \mathbf{H}\underline{\mathbf{M}}\mathbf{B}\underline{\mathbf{M}}^{T}\mathbf{H}^{T} + \mathbf{H}\underline{\mathbf{N}}\mathbf{Q}\underline{\mathbf{N}}^{T}\mathbf{H}^{T}\right)^{-}$
$\eta = \mathbf{K}_{q} \mathbf{d}_{b}^{o}$	$\mathbf{K}_{q} = \mathbf{Q}\mathbf{N}^{T}\mathbf{H}^{T}\left(\mathbf{R} + \mathbf{H}\mathbf{M}\mathbf{B}\mathbf{M}^{T}\mathbf{H}^{T} + \mathbf{H}\mathbf{N}\mathbf{Q}\mathbf{N}^{T}\mathbf{H}^{T}\right)^{-1}$

Desroziers Diagnostics

A method for estimating covariance matrices using analysis increments and innovations

Can be used to diagnose ${\bf R},\,{\bf B}$ and ${\bf A}$ in observation space – otherwise poorly known

Information out of DA – being used to diagnose observation errors

Warning: Separate diagnoses are not independent and errors in one matrix can spread – prior information is required

Model Error Diagnostics

The innovation is defined by

 $\mathbf{d}_{b}^{o} = \mathbf{y} - H(\underline{M}(\mathbf{x}_{b}))$ $\mathbf{d}_{b}^{o} = \mathbf{y} - H(\mathbf{x}_{t}) - [H(\underline{M}(\mathbf{x}_{b})) - H(\mathbf{x}_{t})]$ $\mathbf{d}_{b}^{o} \cong \varepsilon_{o} - \mathbf{H}\underline{\mathbf{M}}\varepsilon_{b} - \mathbf{H}\underline{\mathbf{N}}\varepsilon_{q}$

Innovation covariance $E\left(\mathbf{d}_{b}^{o}\left(\mathbf{d}_{b}^{o}\right)^{T}\right) \cong E\left(\varepsilon_{o}\left(\varepsilon_{o}\right)^{T}\right) + \mathbf{H}\mathbf{M}E\left(\varepsilon_{b}\left(\varepsilon_{b}\right)^{T}\right)\mathbf{M}^{T}\mathbf{H}^{T} + \mathbf{H}\mathbf{N}E\left(\varepsilon_{q}\left(\varepsilon_{q}\right)^{T}\right)\mathbf{N}^{T}\mathbf{H}^{T}$ $E\left(\mathbf{d}_{b}^{o}\left(\mathbf{d}_{b}^{o}\right)^{T}\right) \cong \mathbf{R} + \mathbf{H}\mathbf{M}\mathbf{B}\mathbf{M}^{T}\mathbf{H}^{T} + \mathbf{H}\mathbf{N}\mathbf{Q}\mathbf{N}^{T}\mathbf{H}^{T}$

matrix

Model Error Diagnostics

Model forcing increments

 $\eta = \mathbf{K}_a \mathbf{d}_b^o$

So, the cross-product with the innovations $E\left(\mathbf{H}\underline{\mathbf{N}}\eta\left(\mathbf{d}_{h}^{o}\right)^{T}\right)\cong\mathbf{H}\mathbf{N}\mathbf{K}_{a}E\left(\mathbf{d}_{h}^{o}\left(\mathbf{d}_{h}^{o}\right)^{T}\right)$ $E\left(\mathbf{H}\underline{\mathbf{N}}\eta\left(\mathbf{d}_{b}^{o}\right)^{T}\right) \cong \mathbf{H}\underline{\mathbf{N}}\mathbf{Q}\underline{\mathbf{N}}^{T}\mathbf{H}^{T}\left(\mathbf{R}+\mathbf{H}\underline{\mathbf{M}}\underline{\mathbf{B}}\underline{\mathbf{M}}^{T}\mathbf{H}^{T}+\mathbf{H}\underline{\mathbf{N}}\mathbf{Q}\underline{\mathbf{N}}^{T}\mathbf{H}^{T}\right)^{-1}E\left(\mathbf{d}_{b}^{o}\left(\mathbf{d}_{b}^{o}\right)^{T}\right)$ $E\left(\mathbf{H}\underline{\mathbf{N}}\eta\left(\mathbf{d}_{b}^{o}\right)^{T}\right)\cong\mathbf{H}\underline{\mathbf{N}}\mathbf{Q}\underline{\mathbf{N}}^{T}\mathbf{H}^{T}$ This in not a covariance

Model error diagnostics

How has separation been achieved?

Initial condition errors at start

Model errors throughout the window

 η -> constant

Correction term $\left(\mathbf{R} + \mathbf{H}\underline{\mathbf{M}}\mathbf{B}\underline{\mathbf{M}}^{T}\mathbf{H}^{T} + \mathbf{H}\underline{\mathbf{N}}\mathbf{Q}\underline{\mathbf{N}}^{T}\mathbf{H}^{T}\right)^{-1} E\left(\mathbf{d}_{b}^{o}\left(\mathbf{d}_{b}^{o}\right)^{T}\right)$ Note that **B**, **Q** are not available, only $\mathbf{H}\underline{\mathbf{M}}\mathbf{B}\underline{\mathbf{M}}^{T}\mathbf{H}^{T}$, $\mathbf{H}\underline{\mathbf{N}}\mathbf{Q}\underline{\mathbf{N}}^{T}\mathbf{H}^{T}$

 $\boldsymbol{B}-\text{observations}$ from start of window

 \mathbf{Q} – observations at time 1

Simple model tests

www.metoffice.gov.uk

Lorenz 95

1d model with variables defined on a latitude circle

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F$$

i=1,2, ..., N cyclic boundary conditions with N=40 and F=8

Allegorical of NWP models with $\Delta t=1$ associated with 5 days

Integration with Euler method with time-step Δt =0.005

Lorenz 95 imperfect

Each TS, perturbations added with correlation length of 5 gridpoints

Perturbations constant over DA window

Perturbations restricted to first half of the grid

Perturbations applied to truth model

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F + P$$

Lorenz 2005, model 2

Based on the Lorenz 95 model, but introduces spatial correlations

 $\frac{dx_i}{dt} = [x, x]_{K,i} - x_i + F \qquad W_i = \sum_{j=-J}^{J} \frac{x_{i-j}}{K} \qquad N = 120$ $[x, x]_{K,i} = -W_{i-2K}W_{i-K} + \sum_{j=-J}^{J} \frac{W_{i-K+j}x_{i+k+j}}{K} \qquad J = \operatorname{int}(K/2)$ K = 6

 Σ ' is a modified summation (if *K* is even, give half weight to the end points)

Integration with Euler method with time-step Δt =0.005

All variables observed every $10\Delta t$

Data assimilation window uses observations from 3 times (window length Δt =0.1)

Lorenz 2005, model 2, imperfect

Impose an error in the modified summation

For the forecast model, divide the end points by 1.02

$$W_{i} = \frac{\frac{1}{2}x_{i-3} + x_{i-2} + x_{i-1} + x_{i} + x_{i+1} + x_{i+2} + \frac{1}{2}x_{i+3}}{6}$$

$$\longrightarrow W_{i} = \frac{\frac{1}{2.04}x_{i-3} + x_{i-2} + x_{i-1} + x_{i} + x_{i+1} + x_{i+2} + \frac{1}{2.04}x_{i+3}}{6}$$

Applies to all the modified summations in the model

Data assimilation settings

Weak-constraint 4DVar

All variables observed every $10\Delta t=0.05$

Data assimilation window uses observations from 3 times (window length $\Delta t=0.1$)

Static covariance matrices are used

Initial B and Q covariance matrices similar, and far from ideal

Observations – perturb truth, variance 0.01

Initial R matrix is the true covariance matrix, and not cycled

Lorenz '95 results

1st estimate

True model errors

1st estimate

True model errors

1st estimate

Lorenz 95 B – initial time obs

True background errors

www.metoffice.gov.uk

1st estimate

True model errors

1st estimate

40

0.0004

0.0000

True background errors

Lorenz '05 results

1st estimate

20

40

60

80

100

120

True model errors

1st estimate

20

40

60

100

80

120

True background errors

www.metoffice.gov.uk

1st estimate

Comparison with analysis increment covariance

-0.0005

5 10 15 20 25 30

15

20 25 30 35 40

5 10

True model errors

0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

-0.0005

0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

-0.0005

35 40

35 40

Estimating **B**, **Q** and **R**

25 30 35 40

5 10 15 20

10 15 20

5

35 40

25 30

-0.0005

Estimating **B**, **Q** and **R**

10

15

5

20 25 30 35 40

5 10 15 20

-0.0005

0.0000

35 40

25 30

Estimating **B**, **Q** and **R**

10 15

5

0.0000

30 35 40

20 25

-0.0005

5 10 15 20

0.0015

0.0000

35 40

25 30

Summary

Successfully separated model, background and observation error by extending method of Desroziers

• Both when model error is present, and when it is not

Assumptions about model error are important

• Separation less successful if model error uncorrelated

Initial estimate of **Q** -> Weak-constraint DA -> Revised **Q**

- Requires a model for model error
- Uses assumptions built into DA

Limitations

Statistical method – estimate parameters of a stationary model

Here: model errors are state independent

Desroziers diagnostics are available in observation space

Prior knowledge needed to separate the matrices

Assumes background, model and observation errors uncorrelated

Thank you

References

Todling (2015): A lag-1 smoother approach to system error estimation: Sequential method, *QJRMS*, **141**: 1502–1513

Todling (2015): A complementary note to 'A lag-1 smoother approach to system-error estimation': the intrinsic limitations of residual diagnostics, *QJRMS*, **141**: 2917–2922

Desroziers, Berre, Chapnik, Poli (2005): Diagnosis of observation, background and analysis-error statistics in observation space, *QJRMS*, **131**: 3385-3396

Piccolo, Cullen (2016): Ensemble Data Assimilation Using a Unified Representation of Model Error, *MWR*, **144**, 213-224