“-%

”f‘v-

-m_ _o‘n\-:..
x;? |

Determmlng .ptlmal MPI
Process PI‘-a"*?i*?ement for Large-
Scale I\/Ieteorclogy Simulations
with SGI I\/IPIpIace

James Southern,'.‘;;]lm Tuccillo

SGI _, :
25 October 2016 |

Motivation

 Trend in HPC continues to be towards more cores,
slower clock speed.

— Applications will require increasing parallelism.

— Some parallelism will be soaked up within a node, but
there will also be a requirement for inter-node
communication.

— Some of today’s best performing interconnect
technologies do not scale linearly with increasing
system size — may no longer be feasible.

— Future capability systems likely to have relatively
sparse interconnects compared to today.

— Applications may need to place processes carefully
across topology to maximize performance.

©2016 SGil

Common Topology Options

[Supported }
on SGIICE | Fat Tree (Clos Networks)

All-To-All)

St

il

Hypercube Multi-Dimensional
All-To-All -

_——

adadadadadad,

' iﬁ(ﬁ'ﬁfi‘?ﬁﬁ!i‘@?\f?

©2016 SGil

Pros and Cons

 Fat Tree:
— Strong, general purpose fabric.
— Effective for small systems.
— Expensive for large systems.

— Rich path fabrics and consistent
hop-counts: predictable job latency.

— Cost does not scale linearly: switching and cabling
becomes increasingly expensive with size.

e Torus:

— Highly scalable: switching and cabling scales
linearly with size.

O

— Multiple paths between two nodes: good load
balancing, fault resilience. @
@

— Can lead to large hop-count for some messages
on larger systems (poor latency).

©2016 SGil

Pros and Cons

« All-To-All:
— ldeal for apps that are highly sensitive S

to MPI latency. %

i

— Limited to small systems by port
counts on switches.

« Multi Dimensional All to All:

— Low latency interconnect: maximum
hop count is D+1.

— Fewer cables than All-To-All, but
number of cables still does not scale
linearly with system size.

— Connectivity “islands”: sudden
discontinuity in latency for jobs above |
a certain size or spanning two islands.

©2016 SGil

SGl's Hypercube Topology

- Add orthogonal
dimensions of
Interconnect to grow
the system.

- Cost grows linearly
with system size.

 Easily optimized for
both local and global
communication.

* Rich bandwidth
capabillity that scales
easily from small to
very large systems.

©2016 SGil

Enhanced Hypercube

- At small scale, real applications tend to show
limited sensitivity to interconnect topology.

20 -
-
w2 060 5
o]
o 120 120 4
=z
& 0.40 = 0 T =
= o a
] £ =
8 2 = 900 4
H w100 1 s
E oz -] a7 3
H £ z
S = =
-9 5 0.80 S 0.s0 4
0.00 . i 0
2 1 . . 2 uso
(=) b = b T
& &
2 £
o @
2 2
£ 040 - % 040 4
2 2
W EHT S-2-2-2-2 o @
c 2
E 02 E 0.20
W EHC 44444 £ 020 E o
= £
oy £ i
MDA 2A 1-1
000 v - T T 4 0.00 4 T T T T
2 4 g 15 it} 2 4 g 16 E
Numb Number of switches

mMDA2A 2-2

e to EHC 4-4-4-4-4 (higher is better,
o = e =

BQCD GAMESS

©2016 SGil

Process Placement

- EHC provides good off-the-shelf performance for most
applications.

: : M Optimal placement Default placement
It is possible to extract 5=
even better performance ¥
for some applications by © 20 -
placing processes 9
optimally. 215 -
— Put MPI processes that &
communicate heavily on =
nearby nodes. ER
— This is increasingly S
important as the number = o -
of nodes (and switches) ST TN S JPA S S, SN R PR S o
increases. Noder ¥V T
« SGI provide tools to Bandwidth per node for a QCD application with a 4-d grid
assist with placement. stencil communication pattern. Placing processes optimally
makes all communications one-hop, increasing scalability.

©2016 SGil

SGI MPInside

* SGI's MPI profiling tool

— Useable with thousands of MPI ranks.
— No need to re-compile or re-link.

— Break down how much time application spends in
each MPI routine.

— Generate communications matrices to assist
understanding of complex applications.
« Amount of data transferred, number of requests, wait time.

— Simple performance modelling.
 Use virtual clocks to perform on-the-fly “what-if” experiments.

* E.g. Investigate the impact of an interconnect with different
performance characteristics.

©2016 SGil

MPInside Example Profile

100

I A S gy WA S et

Others
MPI_Allreduce
T_WRITE
MPI_Wait
MPI_Bcast
MPI_Recv
MPI_Waitall
Compute

e
S
[}]
£
=
c
@]
S
-
|9
]
x
(RN]

MPI rank

C
©2016 SGil < 9 Ol

SGI MPlplace

* A profile-guided placement tool for MPI

— Map MPI ranks to nodes using knowledge of
underlying interconnect topology and MPInside
communication matrix.

— Minimize inter-node and inter-switch transfer costs.

00 50 100 150 200 250 300 350 400

©2016 SGil

A Toy Example

» Six MPI processes on three nodes (or on six nodes,
three switches).

- Each rank sends some data to every other rank.
— Some ranks send more data to others.
— Three pair of “partners”.

 Optimal communication pattern Is to have partners
located on the same node (or switch).

-

©2016 SGil

Three Node Example

jsouthern@cy002: gsub -I -lselect=3:ncpus=56:mpiprocs=2
gsub: waiting for job 49679.cy002 to start

gsub: job 49679.cy002 ready

jsouthern@r2i7n0: mpiexec mpt ./test | sort -k 7 -

MPI rank O runs on host rZi;nO
MPI rank runs on host r2i7n0

MPI rank 2 runs on host r2i7n2 r2i7n2

MPI rank runs on host r2i7n2

MPI rank runs on host r2%7n3
MPI rank 5 runs on host r2i7n3

jsouthern@r2i7n0: mpiexec mpt MPInside ./test > /dev/nul
MPInside 3.6.1 standard:

MPInside... Writing Reports. Please wait

jsouthern@r2i7n0: mpiexec mpt ${PWD}/mpiplace compute -n pbs.nodefile
-p MPINSIDE MAT DIR/ -o mpiplace.out -v

This job will use 3 hosts and 1 switches
Jjsouthern@r2i7n0: export MPI WORLD MAP="mpiplace.out"

Jsouthern@r2i7n0: mpiexec mpt ./test | sort -k 7

MPI rank runs on host r2i7n0

r2i7n0
MPI rank runs on host r2i7n0 - o o
7N

MPI rank runs on host r2i7n2

MPI rank runs on host r2i7n2 r2i7’n2) o
P4

MPI rank runs on host r2i7n3

MPI rank runs on host r2i7n3 r2i7n3 \| S~
C @ © |

AR)
©2016 SGI —— 12 S 124 !

Three Node Example

jsouthern@cy002: gsub -I -lselect=36:ncpus=56:mpiprocs=1
gsub: waiting for job 49680.cy002 to start

gsub: job 49680.cy002 ready

jsouthern@r2i2n0: mpiexec mpt ./test | sort -k 7

MPI rank O runs on host r2iOn0

MPI rank runs on host r2iOnl

MPI rank runs on host r2i0Onb

MPI rank runs on host r2i0Oné6

MPI rank runs on host r2i0Onl8

MPI rank 5 runs on host r2i0Onl9

jsouthern@r2i2n0: mpiexec mpt MPInside ./test > /dev/nul
MPInside 3.6.1 standard:

MPInside... Writing Reports. Please wait

jsouthern@r2i2n0: mpiexec mpt ${PWD}/mpiplace compute -n pbs.nodefile
-p MPINSIDE MAT DIR/ -o mpiplace.out -v

This job will use 6 hosts and 3 switches
Jjsouthern@r2i2n0: export MPI WORLD MAP="mpiplace.out"

Jsouthern@r2i2n0: mpiexec mpt ./test | sort -k 7

MPI rank 0 runs on host r2iOn0
MPI rank 4

MPI rank 2

MPI rank 1 runs on host r2i0n6
MPI rank 5

MPI rank 3 runs on host r2i0Onl9

runs on host r2iOnl

runs on host r2i0nb5

runs on host r2i0nl8

Jjsouthern@r2i7n0:

AR)
©2016 SGI —— 13 SGE

Real Weather Applications

* MPAS Atmosphere (MPAS-A):

— Atmospheric component of the MPAS (Model for
Prediction Across Scales) Earth system modelling
package.

— Flat MPI. Chose a problem size such that there
was a reasonable amount of MPI time.
* |FS:
— RAPS14 benchmark cases.
— Hybrid MPI+OpenMP.

— Chose benchmark case and number of MPI ranks
so that there was a reasonable amount of MP!
time when run on the benchmark system.

©2016 SGil

Benchmark System

« SGI ICE XA.

— 288 dual-socket compute nodes.

+ 2 X Intel E5-2690 v4 CPU
(14 core, 2.6 GHz).

- 128 GB memory.
— 5D enhanced hypercube
Interconnect.
* 4-4-4-4-4 topology.
* EDR InfiniBand.
+ Dual plane.
* Premium switch blades.

— SUSE Linux Enterprise Server 11.3.
* Intel compilers (version 16.0.3)
« SGI MPT (version 2.14).
+ SGI Performance Suite.

©2016 SGil

MPAS-A From NCAR

» Atmospheric component at 30 km.

- Exhibits good scalablility — approximately 86% parallel
efficiency at 6912 cores relative 1152 cores.

« 30 km resolution chosen so that we would see a
noticeable amount of MPI time on the system we were
using (8064 Broadwell cores). Experiments were
performed using 6912 cores.

* Only the time integration is considered.

— The simulation was for 3 hours and required 720
timesteps.

— Typically a first timestep will take longer as pages of
memory are allocated — we used a large enough number
of timesteps to reduce that impact.

©2016 SGil

MPAS-A MPI Instrumentation:
Default Task Layout

35

. \ W TP T {0 \d . .
W v\"\"y,“‘,u,«vv"‘-‘r“” T Al " ~\w\‘w‘.-.‘Fw;w;wr“w'*""."\.\"“wmu AN A A LAY o T o o I ew ol N W ol NP MM e AR, T
L AP ekl A T P | UMt M AN AL AMAAAMALORAR LA L ki

N
92

m allred
M irecv

M isend

N
o

[EEY
(92}

M wait
Hinit

Time (seconds)

B Comput

MPI Task Number

©2016 SGiI

Performance of MPAS-A

w
U

W
D

w
w

(98]
N

w
[N

(O8]
o

Average Run Time (seconds)

N
X0
|

N
o
|

Default Random Shuffle Random Shuffle MPlplace
Tasks Nodes

Task Layout

©2016 SGil

MPAS-A MPI Instrumentation:
Random Shuffle of the Tasks

35

30
— 25 m allred
_g 20 Mirecv
(&) .
0 M isend
0 15 ® wait
=

M init
B Comput

MPI Task Number

©2016 SGiI

IFS Benchmark

 Ran the TC0639 dataset.

— Scales relatively well to 200 nodes, but MPI time
IS beginning to grow.
— Run with 28 MPI processes per node.

— Hyper-threading is enabled, so two OpenMP
threads per task.

» Use the “short” version of the benchmark.
— Simulates two days forecast modelling.
— Runs for approximately 210 seconds.

— As for MPAS-A, first time step takes longer, we
ran for long enough to reduce that impact.

©2016 SGil

IFS Instrumentation:
Default Task Layout

100 LU R N N R N R RN R RN NN N NN RN R NN NN R RN R RN ERERERREEE)

Others
T_write_in_mpi
mpi_barrier
MPI_Init
mpi_recv
mpi_bsend
mpi_alltoallv
mpi_bcast
mpi_wait
Compute

Execution time (%)

MPI rank

©2016 SGil

Performance of IFS

216

N
[HEY
N

N

o

D
|

Average Run Time (seconds)
o
(00}

200 -

Default Random Shuffle Random Shuffle MPlplace
Tasks Nodes

Task Layout

©2016 SGiI

Conclusions

« SGI provide tools (MPInside, MPIplace) to assist with
optimal placement over relatively sparse topologies.

- Both MPAS-A and IFS showed around a 1%
Improvement in run-time when running the selected
test cases.

— In the case of MPAS-A (~15% MPI time) this improvement
IS clearly more than simply random fluctuations. Reduced
MPI time by more than 5%.

— IFS (~35% MPI time for this test case) shows limited
sensitivity to process placement overall: a completely
random process placement is <5% slower than optimal.

 On larger systems, with more MPI processes and
more latency optimal process placement would be
expected to become more important.

©2016 SGil

©2016 SGil

