
0

Determining Optimal MPI

Process Placement for Large-

Scale Meteorology Simulations

with SGI MPIplace

James Southern, Jim Tuccillo

SGI

25 October 2016

1 ©2016 SGI

• Trend in HPC continues to be towards more cores,
slower clock speed.
– Applications will require increasing parallelism.

– Some parallelism will be soaked up within a node, but
there will also be a requirement for inter-node
communication.

– Some of today’s best performing interconnect
technologies do not scale linearly with increasing
system size – may no longer be feasible.

– Future capability systems likely to have relatively
sparse interconnects compared to today.

– Applications may need to place processes carefully
across topology to maximize performance.

Motivation

2 ©2016 SGI

Common Topology Options

Fat Tree (Clos Networks)
All-To-All

Hypercube Multi-Dimensional

All-To-All

Torus

Supported

on SGI ICE

3 ©2016 SGI

• Fat Tree:
– Strong, general purpose fabric.

– Effective for small systems.

– Expensive for large systems.

– Rich path fabrics and consistent
hop-counts: predictable job latency.

– Cost does not scale linearly: switching and cabling
becomes increasingly expensive with size.

• Torus:
– Highly scalable: switching and cabling scales

linearly with size.

– Multiple paths between two nodes: good load
balancing, fault resilience.

– Can lead to large hop-count for some messages
on larger systems (poor latency).

Pros and Cons

4 ©2016 SGI

• All-To-All:
– Ideal for apps that are highly sensitive

to MPI latency.

– Limited to small systems by port
counts on switches.

• Multi Dimensional All to All:
– Low latency interconnect: maximum

hop count is D+1.

– Fewer cables than All-To-All, but
number of cables still does not scale
linearly with system size.

– Connectivity “islands”: sudden
discontinuity in latency for jobs above
a certain size or spanning two islands.

Pros and Cons

5 ©2016 SGI

9 or 18
nodes

9 or 18
nodes

• Add orthogonal
dimensions of
interconnect to grow
the system.

• Cost grows linearly
with system size.

• Easily optimized for
both local and global
communication.

• Rich bandwidth
capability that scales
easily from small to
very large systems.

SGI’s Hypercube Topology

0 1

4 5

3

7 6

2

8 9

12 13

11

15 14

10

16 17

20 21

19

23 22

18

24 25

28 29

27

31 30

26

1D

2D

3D

4D

5D

6 ©2016 SGI

• At small scale, real applications tend to show
limited sensitivity to interconnect topology.

Enhanced Hypercube

Harmonie (DKE) OFAM3

BQCD GAMESS

7 ©2016 SGI

• EHC provides good off-the-shelf performance for most
applications.

• It is possible to extract
even better performance
for some applications by
placing processes
optimally.
– Put MPI processes that

communicate heavily on
nearby nodes.

– This is increasingly
important as the number
of nodes (and switches)
increases.

• SGI provide tools to
assist with placement.

Process Placement

0

5

10

15

20

25

B
an

d
w

id
th

 p
er

 n
o

d
e

(G
B

/s
)

Nodes

Optimal placement Default placement

Bandwidth per node for a QCD application with a 4-d grid

stencil communication pattern. Placing processes optimally

makes all communications one-hop, increasing scalability.

8 ©2016 SGI

• SGI’s MPI profiling tool

– Useable with thousands of MPI ranks.

– No need to re-compile or re-link.

– Break down how much time application spends in
each MPI routine.

– Generate communications matrices to assist
understanding of complex applications.

• Amount of data transferred, number of requests, wait time.

– Simple performance modelling.
• Use virtual clocks to perform on-the-fly “what-if” experiments.

• E.g. Investigate the impact of an interconnect with different
performance characteristics.

SGI MPInside

9 ©2016 SGI

MPInside Example Profile

10 ©2016 SGI

• A profile-guided placement tool for MPI

– Map MPI ranks to nodes using knowledge of
underlying interconnect topology and MPInside
communication matrix.

– Minimize inter-node and inter-switch transfer costs.

SGI MPIplace

Optimal
placement

of MPI
ranks on

nodes

11 ©2016 SGI

• Six MPI processes on three nodes (or on six nodes,
three switches).

• Each rank sends some data to every other rank.
– Some ranks send more data to others.

– Three pair of “partners”.

• Optimal communication pattern is to have partners
located on the same node (or switch).

A Toy Example

0

2

1

4

3

5

0

2

4

3

1

5

n0

n1

n2

n0

n1

n2

12 ©2016 SGI

jsouthern@cy002: $ qsub -I -lselect=3:ncpus=56:mpiprocs=2

qsub: waiting for job 49679.cy002 to start

qsub: job 49679.cy002 ready

jsouthern@r2i7n0: $ mpiexec_mpt ./test | sort -k 7

MPI rank 0 runs on host r2i7n0

MPI rank 1 runs on host r2i7n0

MPI rank 2 runs on host r2i7n2

MPI rank 3 runs on host r2i7n2

MPI rank 4 runs on host r2i7n3

MPI rank 5 runs on host r2i7n3

jsouthern@r2i7n0: $ mpiexec_mpt MPInside ./test > /dev/null

MPInside 3.6.1 standard:

MPInside... Writing Reports. Please wait

jsouthern@r2i7n0: $ mpiexec_mpt ${PWD}/mpiplace_compute -n pbs.nodefile

-p MPINSIDE_MAT_DIR/ -o mpiplace.out -v

This job will use 3 hosts and 1 switches

jsouthern@r2i7n0: $ export MPI_WORLD_MAP="mpiplace.out"

jsouthern@r2i7n0: $ mpiexec_mpt ./test | sort -k 7

MPI rank 0 runs on host r2i7n0

MPI rank 4 runs on host r2i7n0

MPI rank 1 runs on host r2i7n2

MPI rank 2 runs on host r2i7n2

MPI rank 3 runs on host r2i7n3

MPI rank 5 runs on host r2i7n3

jsouthern@r2i7n0: $

Three Node Example

1. Run with default placement to get baseline.

2. Generate profiling data with MPInside.

3. Calculate optimal process

placement with MPIplace.

4. Run with optimal placement.

13 ©2016 SGI

jsouthern@cy002: $ qsub -I -lselect=36:ncpus=56:mpiprocs=1

qsub: waiting for job 49680.cy002 to start

qsub: job 49680.cy002 ready

jsouthern@r2i2n0: $ mpiexec_mpt ./test | sort -k 7

MPI rank 0 runs on host r2i0n0

MPI rank 1 runs on host r2i0n1

MPI rank 2 runs on host r2i0n5

MPI rank 3 runs on host r2i0n6

MPI rank 4 runs on host r2i0n18

MPI rank 5 runs on host r2i0n19

jsouthern@r2i2n0: $ mpiexec_mpt MPInside ./test > /dev/null

MPInside 3.6.1 standard:

MPInside... Writing Reports. Please wait

jsouthern@r2i2n0: $ mpiexec_mpt ${PWD}/mpiplace_compute -n pbs.nodefile

-p MPINSIDE_MAT_DIR/ -o mpiplace.out -v

This job will use 6 hosts and 3 switches

jsouthern@r2i2n0: $ export MPI_WORLD_MAP="mpiplace.out"

jsouthern@r2i2n0: $ mpiexec_mpt ./test | sort -k 7

MPI rank 0 runs on host r2i0n0

MPI rank 4 runs on host r2i0n1

MPI rank 2 runs on host r2i0n5

MPI rank 1 runs on host r2i0n6

MPI rank 5 runs on host r2i0n18

MPI rank 3 runs on host r2i0n19

jsouthern@r2i7n0: $

Three Node Example

1. Run with default placement to get baseline.

2. Generate profiling data with MPInside.

3. Calculate optimal process

placement with MPIplace.

4. Run with optimal placement.

14 ©2016 SGI

• MPAS Atmosphere (MPAS-A):
– Atmospheric component of the MPAS (Model for

Prediction Across Scales) Earth system modelling
package.

– Flat MPI. Chose a problem size such that there
was a reasonable amount of MPI time.

• IFS:
– RAPS14 benchmark cases.

– Hybrid MPI+OpenMP.

– Chose benchmark case and number of MPI ranks
so that there was a reasonable amount of MPI
time when run on the benchmark system.

Real Weather Applications

15 ©2016 SGI

• SGI ICE XA.
– 288 dual-socket compute nodes.

• 2 x Intel E5-2690 v4 CPU
(14 core, 2.6 GHz).

• 128 GB memory.

– 5D enhanced hypercube
interconnect.

• 4-4-4-4-4 topology.

• EDR InfiniBand.

• Dual plane.

• Premium switch blades.

– SUSE Linux Enterprise Server 11.3.
• Intel compilers (version 16.0.3)

• SGI MPT (version 2.14).

• SGI Performance Suite.

15

Benchmark System

16 ©2016 SGI

• Atmospheric component at 30 km.

• Exhibits good scalability – approximately 86% parallel
efficiency at 6912 cores relative 1152 cores.

• 30 km resolution chosen so that we would see a
noticeable amount of MPI time on the system we were
using (8064 Broadwell cores). Experiments were
performed using 6912 cores.

• Only the time integration is considered.
– The simulation was for 3 hours and required 720

timesteps.

– Typically a first timestep will take longer as pages of
memory are allocated – we used a large enough number
of timesteps to reduce that impact.

MPAS-A From NCAR

17 ©2016 SGI

MPAS-A MPI Instrumentation:

Default Task Layout

0

5

10

15

20

25

30

35

Ti
m

e
(s

e
co

n
d

s)

MPI Task Number

allred

irecv

isend

wait

init

Comput

18 ©2016 SGI

Performance of MPAS-A

28

29

30

31

32

33

34

35

Default Random Shuffle
Tasks

Random Shuffle
Nodes

MPIplace

A
ve

ra
ge

 R
u

n
 T

im
e

 (
se

co
n

d
s)

Task Layout

19 ©2016 SGI

MPAS-A MPI Instrumentation:

Random Shuffle of the Tasks

0

5

10

15

20

25

30

35

Ti
m

e
(s

e
co

n
d

s)

MPI Task Number

allred

irecv

isend

wait

init

Comput

20 ©2016 SGI

• Ran the TCo639 dataset.
– Scales relatively well to 200 nodes, but MPI time

is beginning to grow.

– Run with 28 MPI processes per node.

– Hyper-threading is enabled, so two OpenMP
threads per task.

• Use the “short” version of the benchmark.
– Simulates two days forecast modelling.

– Runs for approximately 210 seconds.

– As for MPAS-A, first time step takes longer, we
ran for long enough to reduce that impact.

IFS Benchmark

21 ©2016 SGI

IFS Instrumentation:

Default Task Layout

22 ©2016 SGI

Performance of IFS

200

204

208

212

216

Default Random Shuffle
Tasks

Random Shuffle
Nodes

MPIplace

A
ve

ra
ge

 R
u

n
 T

im
e

(s
ec

o
n

d
s)

Task Layout

23 ©2016 SGI

• SGI provide tools (MPInside, MPIplace) to assist with
optimal placement over relatively sparse topologies.

• Both MPAS-A and IFS showed around a 1%
improvement in run-time when running the selected
test cases.
– In the case of MPAS-A (~15% MPI time) this improvement

is clearly more than simply random fluctuations. Reduced
MPI time by more than 5%.

– IFS (~35% MPI time for this test case) shows limited
sensitivity to process placement overall: a completely
random process placement is <5% slower than optimal.

• On larger systems, with more MPI processes and
more latency optimal process placement would be
expected to become more important.

Conclusions

24 ©2016 SGI 24

