

ERA-CLIM2 WP1/WP2 Future coupling methods

ERA-CLIM2 breakout discussion, January 2017

www.metoffice.gov.uk

Contents

- Discuss outstanding deliverables particularly any issues.
- Integrating code developments in CERA: e.g. METO and SST assimilation; MERCO sea-ice assimilation code delivery.
- Outcomes from the WMO CDAW breakout session in Toulouse.

WP2 status of deliverables

Deliverable number	Deliverable title	Delivery date	Туре
D2.1	Assimilation of sea-surface temperature observations [METO]	27 => 39	Code + documented results
D2.2	Assimilation of sea-ice observations [MERCO]	27 => 39	Code + documented results
D2.3	Ensemble-based covariance estimates [CERFACS]	34 => 46	Code + documented results
D2.4	Ensemble-based covariances in coupled data assimilation [CMCC]	24 => 36	Report
D2.5	4D-Var in NEMOVAR [INRIA]	27 => 39	Report
D2.6	Optimised model parameters for the carbon cycle [UVSQ]	34 => 46	Report
D2.7	Alternatives for coupling ocean biogeochemistry [MERCO]	34 => 46	Report
D2.8	Weakly coupled assimilation methods [UREAD]	18	Report
D2.9	Covariances from weakly coupled data assimilation [METO]	18	Report
D2.10	Coupled-model drift [UREAD]	34 => 46	Report
D2.11	Fully coupled data assimilation [INRIA]	34 => 46	Report
D2.12	Status report WP2 [METO]	8	Report

• 4 deliverables complete. The latest is the D2.4 report.

• 3 deliverables are due soon (month 39). They are expected to be delivered on time.

• 5 deliverables are due at month 46.

WP2 deliverables

• Two types of deliverables:

- Reports standard report of the developments and results. Can provide template if needed.
- · Code developments, documentation and test results. Suggested template:

WMO Coupled Data Assimilation Workshop

- Breakout session on challenges and priorities for coupled data assimilation for reanalysis.
- Summary presented by P. Laloyaux.
- Could we come up with a list of priorities for further research based on that and other ideas?

CDAW breakout Challenges/priorities for coupled DA

Coupled model biases

- Fewer data to constrain the system in the early period.
- Drift and "jumps" in stratosphere, deep ocean, sea ice.
- Challenge for strongly coupled DA (transfer of biases or positive impact?).
- More research needed on coupled model improvement and bias¹correction.
- Less flexibility in coupled system to compensate for biases in individual components.
- Encourage inter-comparison of biases and drifts in different coupled reanalyses.

Coupled DA methodology

- Smoothness between cycles.
- Longer assimilation windows (?)
- Flexibility in the representation of (multiple) spatial scales in the background error covariances.
- Better assimilation at the air-sea interface (bias reduction vs. coupled interactions).
- Use of coupled reanalysis ensembles for flowdependent covariance estimation as well as uncertainty estimation.
- Consistent DA methodology between components.

CDAW breakout Challenges/priorities for coupled DA

Spin up and initialization of multiple streams

- Computational cost.
- Ocean and sea-ice initialization at start of century.
- Determining uncertainty in initial conditions.
- Changes in the observing system over time
 - Spurious climate signals/trends exacerbated by model and observation bias.
 - Model and observation bias correction is needed.
 - Assimilate only surface pressure and SST (current approach for climate reanalysis).
 - Quality control (esp. newly observed area).

CDAW breakout Challenges/priorities for coupled DA

• Assessment

- Difficult because of multiple components.
- Visualization and diagnostics.
- Provide feedback on coupled model biases (analysis increments).

Novel observation types

- Tracer observations
- Bottom pressure
- Tide gauges
- Tree rings, coral isotopes

