

Spectral and Radiometric characteristics of MTG-IRS

Dorothee Coppens, Bertrand Theodore

Outlines

- 1) Overview of IRS mission, instrument and spatial coverage
- 2) Overall L1 processing for MTG-IRS
- 3) IASI as a proxy to explain IRS particularities
- 4) IRS Spectral Response Function (SRF) and impact for the users community:
 - a) Current status
 - b) Apodisation
 - c) Variablility of the Radiometric response
- 5) PC compression
- 6) Conclusion

1) IRS mission

- ✓ The IRS mission performance requirements have been established by EUMETSAT and ESA, after users consultation, and are applicable to the level 1 data
- The requirements concern all spectra covering the entire Earth disk, as seen from the geostationary orbit, when radiometrically and spectrally calibrated and geolocated
- ✓ IRS instrument is developed by OHB as a subcontractor of Thales Alenia Space under the MTG space segment contract to ESA. Whilst EUMETSAT is responsible for the overall MTG system and ground segment procurement

1) IRS mission

The main performances can be summarized as follows:

- Spatial resolution
- Spectral resolution / sampling
- Radiometric stability and noise
- Spectral accuracy
- Repeat cycle

- : 4km at Sub-Satellite Point
- : 0.754 cm⁻¹ / 0.625 cm⁻¹
- : around 0.1-0.2K
- : 0.1K equivalent noise
- : 30 min Europe

6h repeat cycle for the Whole Earth

in courtesy of ESA

1) IRS instrument

- Imaging Fourier Transform Spectrometer, based on a Michelson interferometer
- ✓ 2 spectral bands: LWIR (700 to 1210 cm-1) and MWIR (1600 to 2175 cm-1)
- ✓ CCM mechanism similar to IASI
- ✓ 3 laser beams allowing monitoring the CCM speed variations as well as apex vector offset and slope
- ✓ Maximum OPD: 0.848 cm
- ✓ Detector: 160x160 pixels (a "dwell") measured in 10 sec, with a pixel size of 4 km.

1) IRS measurements

- ✓ L0 data (interferograms, images and auxiliary data) from the instrument, collected and packed by the L0 pre-processor
- ✓ Each dataset represents a dwell (split into 2 bands)
- ✓ 4 different kinds of measurements within an L0 dataset, one Earth View and three radiometric Calibration Views:
 LACT 70 + LACE 69 + L
 - Earth View (EV): actual Earth scene
 Deep Space 2 (DS2): a deep space observation at the beginning of a row
 Blackbody (BB): direct observation of the internal blackbody (every 15 min)
 Deep Space 1 (DS1): a deep space observation through the BB path (every 15

min)

2) Quick overview of the IRS data processing

3) MTG-IRS situation compared to IASI

Main characteristics which are not transparent to the users:

1) Size of the interferogram (maximum Optical Path Difference)

- ✓ 2 cm for IASI → Spectral resolution of 0.5 cm⁻¹ (after apodisation)
- ✓ 0.8 cm for IRS → Spectral resolution of 0.754 cm⁻¹ (after apodisation)

2) Pixel size:

 \checkmark

- ✓ 12 km for IASI → Spectral Response Function is apodised by design
- ✓ 4 km for IRS → Spectral Response function is close to the cardinal sine
- 3) Size of the detector array
 - **2x2** pixels for IASI \rightarrow Spatial coverage of **50x50** km²
 - \rightarrow Small variation of the radiometric response
 - ✓ 160x160 pixels for IRS → Spatial coverage of 640x640 km²

 \rightarrow Large variation of the radiometric response

3) MTG-IRS situation compared to IASI

✓ Dwell of 160x160 pixels (IRS) \rightarrow 2x2 pixel (IASI)

Wn (in m ⁻¹)	70000	121000	159000	225000
IRS centre	0.0053	0.0091	0.0119	0.0169
IRS corner	88.34	152.7	200.0	284.0
IASI	9.24	15.84	21.12	29.70

-> Corner pixel is much further, the spectral shift is 10 times larger

✓ Pixel size of 4km (IRS) → 12 km (IASI)

FWHM (in m ⁻¹)	70000	121000	159000	225000	
IRS centre	72.87	72.87	72.87	72.87	Increase of
IRS corner	72.874	72.883	72.893	72.917	0.04%
IASI	30.64	31.63	32.94	36.70	→ 19.8 %

→ Instrument Line shape <u>varies less</u> for IRS and is closer to the cardinal sine
 → It means that the Radiometric Response has <u>more impact</u> on the Spectral Response Function

4) IRS Spectral Response Function

- ✓ Status of the SRF for MTG-IRS
- Improvement with the apodisation
- ✓ Potential improvements regarding the dependency over the detector array, spectrally and in time with the uniformisation
 - Presentation of the methodology
 - \checkmark Validation of each main contributors of the estimated SRF
 - ✓ Impact on the noise correlation
 - ✓ Impact for the user community

4-a) IRS Spectral Response Function (SRF)

The SRF is a combination of two main terms:

 \checkmark The Radiometric Response **R** (next slide)

✓ the Instrument Line Shape ILS

$$SRF_{\nu_0}(\nu) = Re\left[\frac{R(\nu)}{R(\nu_0)} \times ILS_{\nu}(\nu_0)\right]$$

4-a) Radiometric Response in the SRF estimation

Missing information in the band edge is a problem

SRF more spectrally dependent

Radiometric Response is pixel dependent (25600 pixels for a dwell)

4-a) Situation for the users regarding the SRF

10 Update of 1800 x 25600 SRF, every year, month or day

4-b) IRS Instrument Line Shape

It is possible to improve the situation regarding the ILS with an apodisation (which respects the mission requirement)

Measured ILS:

 ✓ It respects the spectral resolution of 0.754 cm⁻¹ (mission requirement)
 ✓ Defined on a larger spectral area, each wavenumber represents the information coming from a spectra covering (at least) 60 cm⁻¹ → kind of "polluted" by different atmospheric component (spectral cross-talk) Gaussian apodisation (IASI type)

✓ It degrades the spectral resolution by 0.1 cm^{-1} (TBC)

 ✓ Each wavenumber are independent in terms of integrated information (no spectral cross-talk)

<u>Objectives</u>: To uniformise the Spectral Response Function across the detector array, in the spectral range and in time \leftrightarrow To remove the SRF from the measurements.

Measured spectrum:

$$S_{mes} = (S.R) \otimes ILS$$

S: Infinite spectrum R: is the Radiometric response ILS: Instrument Line Shape (including the apodisation function)

<u>Methodology:</u>

$$I_{1B}(x) = FT[S_{mes}(v)]$$

$$S_{1C}(v) = FT^{-1} \left[\frac{I_{1B}(x)}{SAF_{1B_est}(v,x)} \right]$$

with
$$SAF_{1B_est}(v,x) = FT [ILS_{1B_est}(v_0-v),R(v)]$$

4-c) Uniformisation - ILS

0.04

Difference between Corner and Center pixels

=

Pixel 00001 Real Part Pixel 00001 Imag Part 0.03 Radiometric Error (Kelvin) in Nedt at 280 K No 0.02 Uniformisation 0.01 With Uniformisation 0 -0.01 -0.02 -0.03 -0.04600 800 1000 1200 1400 1600 1800 2000 2200 Wave Numbers (cm-1) 10-02-17 MTG-IRS

2400

4-c) Uniformisation – Radiometric Response

4-c) Impact on the noise correlation

Uniformisation = No impact on the noise correlation

4-c) Situation for the users regarding the SRF

5) PC compression

5) PC compression

	Global	Local		
Data Producer	Eigenvectors (EV) monitored and maintained off-line	Extra on-line computations: EV-decomposition for each dwell		
	Static EV basis	New EV basis / dwell		
	(PCS + quality indicators)/pix	(PCS + quality indicators)/pix + EV/dwell		
User	Less noise in leading PCs Weak signal distinguished from noise	More noise in leading PCs Less noise/signal separation		
	New features not retained in PCS → EV basis update may be required	All local "strong enough" signals retained in leading scores		

Experience from IASI operational (Global)

✓ Last update in 2011, included rare AC signatures (peat fires, Russia, Summer 2010)

- Thermodynamic signal preserved:
 - + In-house inspections
 - + "IASI PC compression **Searching for signal in the residuals**", T. Hultberg ECMWF/EUMETSAT NWP-SAF Workshop on efficient representation of hyperspectral infrared satellite observations
 - + Assimilation experiments at ECMWF using **operational static IASI eigenvector** basis

Conclusion

✓ <u>SRF</u>

✓ Improvements regarding the size of the ILS has been chosen with the use of a light apodisation \leftarrow Spectral cross-talk of the ILS covers ~10 cm⁻¹ and the light apodisation does not reduce the first lobes.

 \rightarrow Constrain for the users regarding the RTM ? And Retrievals ?

 \checkmark No stronger apodisation could be chosen because of the mission requirement on the spectral resolution of 0.754 cm⁻¹.

 \rightarrow Constrain for the users regarding the retrievals ?

✓ The uniformisation is currently not in the baseline of the IRS level 1 processing
 ← Thousands SRF need to be taken into account in the Radiative Transfer Models at first place + regular updates.

 \rightarrow Constrain for the users regarding the RTM ?

✓ <u>PCs</u>

✓ Global approach (IASI type): No EV update, less noise \rightarrow capture all signals even the weak ones below the signal noise. New singular signal could be missed.

✓ Regional approach: EV disseminated at each dwell, more noise and different for each dwell, good to see singular signal but not the weak ones.

 \rightarrow What is the preferred solution for the users ?

Thank you for your attention !

Earth Views only

