Validation of MTG observed spectra by comparison to LEO hyperspectral sounders

"Can we Validate GEO observed spectra by comparison to LEO hyper-spectral sounders?"

David Tobin Space Science and Engineering Center University of Wisconsin-Madison

Workshop on Assimilation of Hyper-spectral Geostationary Satellite Observations 22-25 May 2017

ECMWF

Outline

- 1. Hyperspectral LEO accuracy for intercalibration (mainly CrIS) and Leo/Leo Intercal examples
- 2. GSICS GEO/LEO methodology and products
- 3. Example AHI/CrIS comparisons
- 4. The Absolute Radiance Interferometer (ARI) and CLARREO
- 5. Other Thoughts

Suomi-NPP CrIS Radiometric Uncertainty Estimate

(Differential error analysis of the calibration equation, aimed at providing a useful estimate of the absolute accuracy of the mean of a large ensemble of observations. Input parameter uncertainties are based on the design of the sensor and engineering estimates of the calibration parameters; i.e. no external information via external "Cal/Val" used.)

Simplified On-Orbit Radiometric Calibration Equation:

 $R_{Earth} = Re \{ (C'_{Earth} - C'_{Space}) / (C'_{ICT} - C'_{Space}) \} R_{ICT} \text{ with:}$

Nonlinearity Correction: $C' = C \cdot (1 + 2 a_2 V_{DC})$ ICT Predicted Radiance: $R_{ICT} = \varepsilon_{ICT} B(T_{ICT}) + (1 - \varepsilon_{ICT}) [0.5 B(T_{ICT, Refl, Measured}) + 0.5 B(T_{ICT, Refl, Modeled})]$

Parameter Uncertainties:

Parameter	Nominal Values	3- σ Uncertainty
T _{ICT}	280K	112.5 mK
ε _{ICT}	0.974-0.996	0.03
T _{ICT, Refl, Measured}	280K	1.5 K
T _{ICT, Refl, Modeled}	280K	3 К
a ₂ LW band	0.01-0.03 V ⁻¹	0.00403 V ⁻¹
a ₂ MW band	$0.001 - 0.12 V^{-1}$	$0.00128 - 0.00168 V^{-1}$

Example 3-sigma RU estimates

For a typical warm, ~clear sky spectrum

Example 3-sigma RU estimates

Recent CrIS calibration algorithm/parameter investigations

- MW FOV7 nonlinearity
- Scene mirror induced polarization
- "Spectral Ringing" for unapodized spectra
 - "True" ringing
 - On-board FIR filtering
 - Self-apodization corrections
 - Spectral/Radiometric order of calibration operations
- T_{ICT} uncertainty
 - Current values are too large because axial gradients are overestimated in current analyses. Results in change from 112 mK to ~88 mK 3-sigma.

JPSS-1 Calibration Accuracy is very similar to Suomi-NPP CrIS

Main differences are: 1) Improved ICT emissivity, and 2) Different Nonlinearity magnitudes:

Leo/Leo Intercal examples

CrIS/VIIRS comparisons

Example Daily Comparisons, M15 band @ 10.8µm, Descending

CrIS convolved with VIIRS SRF

VIIRS mean within CrIS FOVs

VIIRS standard deviation within CrIS FOVs

Differences for uniform scenes

> Each day includes ~500,000 colocations which pass a spatial uniformity test

CrIS/VIIRS BT differences show trends of less than 2 mK/yr

SNO Datasets

CrIS/AIRS: ~12M "Big Circle" SNOs collected to date; 20 minute window; -30 to 30 deg scan angle, <=2 deg scan angle diff.

2510 cm⁻¹ CrIS/AIRS SNO BTs

CrIS/IASI SNO locations

CrIS/IASI-A: ~50,000 "Big Circle" SNOs collected to date; 20 minute window; nadir. ~20 days of coincidences, ~30 day gaps, ~half at +72.4 deg, ~half at -72.4 deg.

835 cm⁻¹ CrIS/AIRS SNO BT Diffs

AIRS/CrIS SNOs, 2 examples

50 km radius "big circle" SNOs

Observed spatial variability is a very good indicator of the quality of the SNO

AIRS/CrIS SNOs @ 900 cm⁻¹

SNO differences (AIRS-CrIS) for 6 spatial variability bins

AIRS-CrIS (K) differences as a function of scene temperature

IASI-A, CrIS, IASI-B Comparisons

(on CrIS spectral scale and resolution with Hamming apodization)

Geo/Leo Intercal examples

LEO coverage of MTG-IRS spectral bands

GEO-LEO IR - Hyperspectral SNO

GSICS working groups meeting, March 2017, Madison, WI

GEO-LEO IR - Hyperspectral SNO

- Simultaneous near-Nadir Overpasses
 - of GEO imager and LEO sounder
- Select Collocations
 - Spatial, temporal and geometric thresholds
- Spectral Convolution:
 - Convolve LEO Radiance Spectra with GEO Spectral Response Functions
 - to synthesise radiance in GEO channels
- Spatial Averaging
 - Average GEO pixels in each LEO FoV
 - Standard Deviation of GEO pixels as weight
- Weighted Regression of LEO v GEO rads
 - Evaluate Bias for Standard Radiance Scene

Weighted linear regression of L_{GEO|REF} and <L_{GEO}> for Meteosat-9 13.4µm channel based on single overpass of IASI

Example GSICS related products/documents

- Himawari-8/AHI IR Inter-calibration with AIRS, IASI-A/B and CrIS
- http://www.data.jma.go.jp/mscweb/data/monitoring/gsics/ir/monit_geoleoir.html

• ATBD for Prototype GSICS SEVIRI- IASI Inter-Calibration

EUMETSAT Doc.No. : Issue : Date : WBS : EUM/MET/TEN/09/0774 v2A Draft, 16 March 2011

• T. J. Hewison, "An Evaluation of the Uncertainty of the GSICS SEVIRI-IASI Intercalibration Products," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 51, no. 3, pp. 1171-1181, March 2013.doi: 10.1109/TGRS.2012.223633

Example CrIS / AHI comparisons for June 2015

Band 9 @ ~7 μm

June 2015 Night-time, AHI Zenith angle < 62.5 deg, CrIS/AHI Zenith Angle Difference < 2 deg, Time difference < 10 min N= 263,118 (132,051) for CrIS FOV Stdev < 1K (0.2K)

1.5

0.5

- 0

-0.5

-1

-1.5

-2

6

5 (N)60 4

3

2

200

180

280

300

Band 14 @ ~11 μm

June 2015 Night-time, AHI Zenith angle < 62.5 deg, CrIS/AHI Zenith Angle Difference < 2 deg, Time difference < 10 min N= 127,555 (34,198) for CrIS FOV Stdev < 1K (0.2K)

Band 14 @ ~11 μm

June 2015 Day-time, AHI Zenith angle < 62.5 deg, CrIS/AHI Zenith Angle Difference < 2 deg, Time difference < 10 min N= 119,837 (36,998) for CrIS FOV Stdev < 1K (0.2K)

Band 16 @ ~13 μm

June 2015 Night-time, AHI Zenith angle < 62.5 deg, CrIS/AHI Zenith Angle Difference < 2 deg, Time difference < 10 min N= 174,797 (53,185) for CrIS FOV Stdev < 1K (0.2K)

1.5

0.5

0

-0.5

-1

-1.5

-2

6

5 (N)6ol

3

2

200

180

280

300

CLARREO: IR Climate Benchmarking & Intercalibration

Benchmarking Radiance for Climate Change:

With the rapid increase in climate forcing through the addition of infrared active molecules to the atmosphere by fossil fuel combustion and the probability of carbon release from expanding melt zones in the Arctic, the need for irrefutable observations to define the current state of the atmosphere is becoming increasingly critical. The first goal of the Zeus mission is to provide a global benchmark climate record for this and future generations that, by virtue of its high accuracy determined against international standards on-orbit, establishes a new foundation for quantitatively defining the rate of climate change. Achieving this goal will provide decision support for a range of societal issues including water resources, human health, natural resources, energy management, insurance infrastructure, and others that are linked to our understanding of how climate is changing. The first science objective of Zeus is to provide a benchmark of the thermal infrared radiance spectrum against which similar future observations can be compared to establish atmospheric change with credibility.

Benchmarking Radiance for Climate Forecast Testing:

Significant uncertainties exist in forecasts of our future climate. For example, the differences between the IPCC Fourth Assessment models is significant indeed, ranging from virtually no predicted change to a change of 0.6 K/decade between the Japanese medium resolution model and the GISS-EH model for the North American region. Central to the climate sensitivity discrepancy among different IPCC models, is their different climate feedback strengths. To narrow down the uncertainty of climate projection given by the ensemble of these models, it is imperative to measure and confront these models with the feedback strengths measured from observations. To address this issue, the second science objective of Zeus is to provide a benchmark of the thermal infrared radiance spectrum to determine longwave forcings and longwave feedbacks for testing climate models.

Climate Benchmarking & Intercalibration

High Accuracy, verified on-orbit

On-Orbit Verification and Test System

OVTS Provides On-Orbit, End-to-End Calibration Verification & Testing Traceable to Recognized SI Standards

Differences between Absolute Radiance Interferometer (ARI) calibrated brightness temperatures and predicted from the On-Orbit Absolute Radiance Standard (OARS).

CLARREO Intercalibration

Transferring the CLARREO ARI accuracy and calibration traceability to concurrent IR sensors

Characteristics of CLARREO/sounder (sun sync) SNOs for one year and 1 polar orbit CLARREO.

Intercalibration uncertainty as a function of mission length for single spectral channels in the 7, 10, and 15 μ m regions for CLARREO/CrIS SNOs.

Tobin, D., R. Holz, F. Nagle, and H. Revercomb (2016), Characterization of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) ability to serve as an infrared satellite intercalibration reference, J. Geophys. Res. Atmos., 121, doi:<u>10.1002/2016JD024770.</u>

Other Thoughts

- Spectral calibration asssesment using IASI and CrIS
- Leo hypsectral calibrations are full aperture calibration
- By 2023: 2 IASIes, 2 CrISes, plus IKFS and HIRAS
- MTG-IRS dedicated obs to assess inter-pixel consistency, e.g.

Thank You