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Shallow-water version of the Freak Wave Warning System

Abstract

The ECMWF freak wave warning system is based on a random time series analysis using the enve-

lope wave height. The key quantity of interest is the maximum envelope wave height distribution

which for (weakly) nonlinear systems depends on envelope skewness and kurtosis. Expressions for

skewness and kurtosis for general spectra are presented, but they are very cumbersome. Therefore,

a simple parametrization of skewness and kurtosis of the bound waves and the contribution of the

free waves to kurtosis is presented. These parametrisations are validated against computations using

the theoretical expressions of the statistical parameters. By adjusting some free parameters in the

parametrizations a good agreement with the ’exact’ computations is found. It is suggested to use

these parametrizations in the operational version of ECMWF’s freak wave warning system.

1 Introduction.

In the past 15 years there has been considerable progress in our understanding of the occurrence of freak

waves. The notion of freak waves was first introduced by Draper (1965). In the early days, these extreme

sea states were discussed in the context of linear wave theory for which the corresponding probability

density function is the Rayleigh distribution (Dean, 1990), and extreme events were very unlikely. For

example, the probability that an individual wave has an envelope wave height which is three times the

mean wave height turns out to be about 2× 10−9. Recently it was established that nonlinear effects

related to the presence of bound waves and non-resonant four wave interactions have a profound impact

on the statistics of extreme events. Following the approach of Janssen (2015b) these nonlinear effects

increase the probability of extremes by a factor of 100.

Another important advance is related to developments started by J. Adler (1981) who studied the ex-

treme value problem in space and time. So far researchers have concentrated on the estimation of the

probability of extremes from a time series at a certain point in space. From a modeling point of view

it should be realized, however, that it is not really possible to give sea state or probability estimates at

one location. Wave forecasting is based on a statistical representation of the sea state in terms of the

wave spectrum. Here, the wave spectrum gives an ensemble averaged description of the sea state in a

domain of the size of the Lx ×Ly km2 surrounding the location of interest (Nowadays, global operational

wave forecasting models have a typical spatial resolution of about 15 km.). Likewise, one may obtain

an ensemble averaged probability distribution function for quantities such as the envelope wave height

or (linear) wave energy. To be more specific, it is possible to determine the probability that in a chosen

domain parameters such as envelope wave height or wave energy exceed a chosen value, and in order

to achieve this we need to obtain the maximum envelope wave height p.d.f. (which will be given in this

note) and we need an estimate of the number of events in a spatial domain of a given size. Following

the work of Adler (1981), which is based on insights from topology, the number of extreme events is

larger than could be expected from a simple argument using the decorrelation scales in the spatial do-

main. Combining the two developments, namely, introduction of nonlinear effects and estimation of the

number of extreme events, it turns out that extreme events such as the famous Draupner wave and the

Andrea wave are much more likely than the early expectations in the 1960’s and 1970’s. (Cavaleri et al.

(2016), Fedele (2012), Benetazzo et al. (2015), Janssen (2015b)).

In this note, I am going to describe the work that has been done to convert the theoretical approach

to estimate extreme events into a practical application which can be used in the ECMWF freak wave

warning system. In §2 a brief overview of the method is given. Starting point for this is Janssen (2014)

which develops an analysis of time series based on the envelope ρ . The square of the envelope is a

measure for the potential energy of the waves. In fact, the total energy E = ρ2/2. This is a popular
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measure in fields such as nonlinear optics because only the envelope of the wave train can be measured

but not the wave itself. Here, I suggest to use the same measure in the field of ocean waves as it is a

measure that has physical relevance. For convenience, and to stay close to oceanographic practice, the

envelope waveheight h is introduced which is defined to be twice the envelope height, i.e., h = 2ρ . If

the effects of nonlinearity are small, the p.d.f. of envelope wave height may be obtained by means of a

Taylor expansion of the logarithm of its generating function. This basically gives an expansion around

the Rayleigh distribution where the relevant expansion coefficients are the third-order (skewness) and

fourth-order (excess kurtosis) cumulants of the random envelope. Following this approach, envelope

skewness and excess kurtosis for the bound waves can be obtained from the wave spectrum following a

procedure described in Janssen (2009), who applied it to obtain the surface elevations statistics, while

the contribution from the free waves is obtained from Janssen (2003) and Mori and Janssen (2006).

This approach seems to work well as follows from comparisons with p.d.f.’s observed in the laboratory.

Nevertheless, this statistical theory has a restricted range of validity. This follows from a comparison

with maximum wave height data obtained in the field by Janssen and Bidlot (2009) (see their Fig. 8)

where it is evident that the theoretical p.d.f. starts to deviate from the observed one for extreme sea states

with hmax/HS > 2.5. Since extreme events, such as the Draupner wave, have a maximum envelope wave

height that is about three times the significant wave height, it follows that this event is clearly outside

the range of validity of the nonlinear approach and an extension of the domain of validity is required.

Nowadays there is evidence that for very extreme states the p.d.f. has an exponential tail. Particularly

convincing evidence is found from experimental work in nonlinear optics and liquid crystals. The work

of Montina et al. (2009) suggests that the statistics of the fluctuations can be approximated by a simple

empirical form, a stretched exponential distribution. Using this distribution to model the tail of the p.d.f.,

Janssen (2015b) has shown that this results in a satisfactory agreement with Monte Carlo simulations of

a random weakly nonlinear Stokes wave down to values of the simulated p.d.f. of order 10−7.

Given the form of the p.d.f. of envelope wave height, the next step is to establish the maximum envelope

wave height probability distribution. In the present ECMWF Freak Wave Warning system, Goda’s max-

imum wave height distribution has been used. In Goda’s approach an important parameter is the number

of events, of which a choice needs to be made which introduces some arbitrariness. An alternative has

been suggested by Naess (1982). His method is based on the reasonable assumption that for envelope

time series the number of level upcrossings by the envelope ρ(t) is asymptotically Poisson distributed

when the level height increases. In Janssen (2015a) it has been shown that, in particular for the tail of

the maximum wave height distribution, Naess’s idea yields for linear waves a very good agreement with

Monte Carlo simulations of the p.d.f. of maximum envelope wave height. Therefore, it was decided to

use the Naess approach in the operational implementation.

Finally, I present work that is required to develop an operationally feasible warning system. It should be

realized that the expression for skewness and kurtosis introduced by Janssen (2003) and Janssen (2009)

involve the evaluation of four and six dimensional integrals which would result in far too long operational

run times. For this reason, I am going to introduce simple parametrizations of envelope skewness and

kurtosis, which are based on results obtained from the narrow-band version of the theoretical expression

for skewness and kurtosis. These parametrizations are validated against exact computations of the rele-

vant statistical parameters for the Draupner wave and the Andrea Storm, and a reasonable agreement is

obtained.
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2 The method.

Following Janssen (2014) a time series analysis based on the envelope wave height will be used. In this

reference, it is shown that this method gives an accurate estimation of the joint p.d.f. of wave height and

period for linear waves and that it is possible to extend the approach into the weakly nonlinear regime.

To make things more quantitative let us introduce the local energy E = 〈η2〉 and introduce the envelope

ρ according to η = ρ cosθ . One finds

E =
1

2
ρ2, (1)

while the normalized local energy is given by E = E /σ2 with σ2 = m0 the variance of the sea surface

elevation and m0 the zeroth moment of the spectrum. The value E = 1 then corresponds to a local wave

energy which equals the average wave energy in the domain of interest. Events such as the Draupner

wave event and the Andrea storm have E ≃ 20 which illustrates that at the focal point there was a

considerable amplication of wave energy, therefore these events are quite extreme. As an alternative

measure I introduce the local wave height as twice the envelope height ρ and the normalized envelope

wave height h becomes

h =
2ρ

4σ
(2)

and the relation between normalized envelope wave height and local energy is E = 2h2 so that for the

Draupner event hmax = 3.1, while for the Andrea event hmax = 3.26.

2.1 Statistics in the weakly nonlinear regime.

Janssen (2014) has obtained the following envelope wave height distribution for a weakly nonlinear sea

state. It reads

p(h) = 4he−2h2 {

1+C4

(

2h4 −4h2 +1
)

+C2
3

(

4h6 −18h4 +18h2 −3
)}

. (3)

where the parameters C4 and C2
3 are obtained from knowledge of the two-dimensional wave spectrum

and are related to the kurtosis and skewness of the sea state. Here

C4 =
κ4

8
, (4)

and the envelope kurtosis κ4 is given by

κ4 = κ40 +2κ22 +κ04 (5)

while

C2
3 =

κ2
3

72
, κ2

3 = 5(k2
30 +κ2

03)+9(κ2
21 +κ2

12)+6(κ30κ12 +κ03κ21) (6)

The κ’s refer to a number of cumulants of the joint distribution of the surface elevation η = ρ cosθ and

its Hilbert transform ζ = ρ sinθ . In addition, it is noted that both free and bound waves may contribute

to the cumulants. The general expressions for skewness and kurtosis parameters are given in Appendix

A, which also provides explicit expressions for the case of a narrow-band wave train.
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From the pdf for wave height, Eq. (3), one may then immediately obtain the pdf of wave energy, since

p(h)dh = p(E)dE with E = 2h2. The result is

p(E) = e−E
[

1+C4A(E)+C2
3B(E)

]

, (7)

where

A(E) =
1

2
E2 −2E +1, B(E) =

1

2
E3 − 9

2
E2 +9E −3. (8)

Finally, for the purpose of estimating the maximum wave height distribution the exceedance probability

P(E > Ec) is required. It follows from an integration of the pdf (7) from E to infinity, with the result

P(E) = e−E
[

1+C4A(E)+C2
3B(E)

]

, (9)

where

A(E) =
1

2
E(E −2), B(E) =

1

2
E(E2 −6E +6). (10)

It should be realized, however, that the expressions for the p.d.f. and c.d.f. have only a restricted range

of validity. For example, for given stats for skewness and kurtosis the p.d.f. (3) underestimates the true

p.d.f. for large envelope wave heights in the range h > 2.5. In other words, the theoretical approach

fails just in the wave height range where a number of extreme events, such as the Draupner wave and the

Andrea storm, have been reported. The range of validity of the theoretical approach therefore needs to

be extended.

2.2 Behaviour of the tail of the p.d.f.

Nowadays there is ample evidence that for very extreme (sea) states the pdf of envelope wave height

has an exponential tail, resulting, compared to the present theory, in much larger probabilities for ex-

treme events. Evidence for an exponential tail follows from numerical simulations (e.g. Montina et al.

(2009), Walczak et al. (2015), Janssen (2014), Janssen (2015b)), and comparison with field data (Janssen

and Bidlot, 2009). Also, in nonlinear optics and liquid crystals a considerable amount of experimental

evidence is available that suggests that this tail is exponential. It is therefore important to modify the

present approach by adding an exponential tail. For extreme waves in a nonlinear optical cavity Montina

et al. (2009) have noted that the observed probability distribution function for intensity E can be well

approximated by a stretched exponential form, involving a number of fitting parameters. Following this

idea, it was realized, after some trial and error, that by using a stretched exponential to approximate the

cumulative distribution function only one fitting coefficient was needed. The general form used to extend

the range of validity of the theoretical c.d.f. (9) for normalised wave energy reads

P(E) =
∫ ∞

E
dx p(x) = e−z, z =−α +

√

α2 +βE, (11)

where (see Janssen (2015b)) β = 2(α +1) as for zero energy the c.d.f. should equal 1, so that for match-

ing purposes one only needs to determine the parameter α . The origin of (11) is not well understood by

the present author. However, it should be pointed out that the most simple nonlinear system that has a

similar c.d.f for wave energy is one that only has a first and bound, second harmonic (Janssen, 2017).
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This simple form has some interesting properties. First of all, the condition P(E = 0) = 1 is automatically

satisfied so that the underlying pdf p(E) is normalized to 1. Second, for small E Taylor expansion of z

gives z = βE/(2α) hence

lim
E→0

P(E) = e−
β

2α E , (12)

while for large E one finds

lim
E→∞

P(E) = e−
√

βE . (13)

Realizing that E = 2h2 this means that in terms of envelope wave height we have for small E a Gaussian

distribution while for large E the distribution is exponential.

By differentiation of the c.d.f. (11) it is straightforward to obtain the pdf p(E). By definition

p(E) =−∂P

∂E

so that

p(E) =
β

2(z+α)
e−z, z =−α +

√

α2 +βE.

It is then straightforward to obtain the envelope wave height p.d.f. from the condition p(h)dh = p(E)dE

and the result is

p(h) =
2βh

(z+α)
e−z. (14)

In a moment it will be seen that this form of the envelope wave height p.d.f. is an adequate approximation

for both the weakly nonlinear regime and for the tail of the distribution.

A relation for α is now obtained by matching the empirical c.d.f. (11) with the theoretical one, given

in Eq. (9), which is denoted by Pth. The fitting constant α then follows from the condition that at the

edge of the range of validity, taken as Eb = 10 (corresponding to h = 2.2), the empirical CDF equals the

theoretical one, i.e. P(Eb) = Pth(Eb). This gives for α ,

α =
f 2
b −2Eb

2(Eb + fb)
, fb = logPth(Eb). (15)

where fb is the logarithm of the theoretical c.d.f. at the boundary given by E = Eb. In this manner

a connection between skewness and kurtosis of the sea state, via fb, and the fitting parameters of the

empirical CDF has been established. For relatively small values of C4 and C3 this matching procedure

works well, as reported in Janssen (2015b).

It is important to check the validity of the statistical distribution presented in this note by means of a

Monte Carlo simulation, and this subject has been more extensively discussed in Janssen (2015b). Since

the interest is in extreme events with probabilities of the order 10−6 the number of ensemble members

Nens needs to be quite large. By trial and error, I have taken Nens = 50,000,000, in order to obtain

smooth results for the pdf. Assuming that the envelope waveheight pdf is determined by the skewness

factor C3 and the kurtosis factor C4 only, one may use any nonlinear system in the numerical simulation

as long as it has the same statistical parameters. For this reason a Monte Carlo simulation is performed

with a Stokes wave train, where the amplitude a is drawn from a Rayleigh distribution while the random
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Figure 1: Probability distribution function of envelope wave height for a significant steepness of 0.06 and a dimen-

sionless depth of 1.45, mimicking the Draupner wave event. The Monte Carlo simulation shows clear evidence that

the tail of the distribution is exponential. Nonlinear theory combined with the stretched exponential of Residori is

in good agreement with the simulation.

phase is drawn from a uniform distribution. We have studied the properties of the envelope waveheight

of this nonlinear system. The envelope waveheight pdf, as obtained from the Monte Carlo Simulation,

is shown in Fig. 1. Over a wide range of values, between 10−6 and 10−2, the logarithm of the pdf

behaves as a straight line, hence the pdf follows an exponential law. For comparison, also shown are

results according to linear theory, and it is clear that this gives a large underestimation of the frequency

of extreme events. The nonlinear theory discussed by Janssen (2014) shows good agreement with the

simulation up to a waveheight of h = 2.5, but the probability of extreme events such as the Draupner case

with h = 3.1 is considerably underestimated. The approach that adds, using the method detailed here, an

exponential tail is found to agree very well with the numerical simulation. In fact, the violet line, labeled

Nonlinear with exp. tail, corresponds to Eq. (14), therefore the stretched exponential captures both the

weakly nonlinear regime with h < 2.5 and the tail region with h > 2.5. From now onwards I will use the

stretched exponential form for describing the statistical distribution for extreme events.

2.3 Maximum envelope wave height distribution:linear theory.

In order to derive the p.d.f. of maximum envelope wave height we need information on the statistics

of the envelope wave height time series and we need the length TL of the time series. The relevant

statistics are the envelope wave height distribution p(h), the cumulative wave height distribution (or the
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cumulative distribution function, cdf)

P(h) =
∫ ∞

h
dh p(h),

and the joint pdf of envelope wave height h and its time derivative ḣ. Here, we concentrate on linear

theory firstly and in the next sub section we sketch how to extend results for weakly nonlinear theory.

As according to linear theory the envelope wave height distribution is given by the Rayleigh distribution

(see Eq. (3)),

p(h) = 4he−2h2

, (16)

the cumulative distribution function becomes

P(h) = e−2h2

. (17)

Again assuming linear waves, the joint probability distribution (j.p.d.) of envelope wave height h and its

time derivative ḣ is given by

p(h, ḣ)) =
8h√
2π

e−2(h2+ḣ2), (18)

where ḣ has been normalized by means of the parameter m
1/2

0 νω̄ with ω̄ = m1/m0 the mean angular

frequency while ν = (m0m2/m2
1−1)1/2 is the width of the frequency spectrum. Note that by considering

the j.p.d. of h and ḣ the frequency scale νω̄ is introduced in a natural way which corresponds to the

inverse of the relevant timescale of the wave groups. As time has been made dimensionless with this

frequency scale the length Tl of the timeseries has to be scaled accordingly, hence the dimensionless

length is T ∗
L = TL × νω̄ . The result (18) is valid for a Gaussian sea state and can be obtained in a

straightforward manner from the well-known expression of the j.p.d. of envelope ρ and phase φ and its

time derivatives (see e.g. Janssen (2014)). Integration over phase φ and its derivative φ̇ and introduction

of the envelope wave height which is twice the envelope then results in (18). Alternatively, one may

argue that h and ḣ are independent and that the joint pdf of h and ḣ is simply the product of the marginal

distributions of h and ḣ, i.e. the product of a Rayleigh distribution for h and a Gaussian distribution for

ḣ.

In the present ECMWF Freak Wave Warning system Goda’s maximum wave height distribution has been

used. In Goda’s approach an important parameter is the number of events N, which has to be chosen and

therefore introduces some arbitrariness. As already discussed by Janssen (2015a), in Goda’s approach

the maximum wave height distribution is obtained by writing down the probability that for given number

of (independent) events N the maximum envelope height has a certain chosen value. In other words, the

maximum wave height distribution pmax(hmax) is the probability that a certain event attains the maximum

value multiplied by the probability that all other events are below the maximum value while realizing that

there are N possibilities. In the continuum limit, i.e. for large N, the maximum wave height distribution

assumes, with G (h) =−NP(h), the simple form

pmax(h = hmax) =
dG

dh
exp(G ) = N p(hmax)exp[−NP(hmax)], (19)

where p(h) is the p.d.f. of envelope wave height and P(h) is the exceedance probability. Then, the

probability that maximum envelope wave height is larger than a given value, say hc, becomes for large

N,

P(hmax > hc)≃ 1− exp(G (hc)) = 1− exp(−NP(hc)).
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For linear waves the statistics are Gaussian and the exceedance probability is given in (17) resulting in

the well-known double exponential law

P(hmax > hc) = 1− exp{−Ne−2h2
c}

for the maximum envelope wave height probability. Note that in Goda’s method the number of events N

is independent of the exceedance level hc.

So the question now is how to choose the number of independent events. It is customary to define an

event with respect to a chosen reference level hc. An event is then a part of a time series of length TL

that starts where the envelope has an upcrossing at level hc and that finishes at the next upcrossing. The

frequency of events is then determined by the upcrossing frequency. The total number of events in a time

series of length TL then determines the number of degrees of freedom N. For a more complete discussion

see Elgar et al. (1984), where it follows that N and also parameters such as the number of waves in

a group depend on the chosen reference level, but it is not clear which level to choose. Therefore, in

order to make Goda’s method work, which relies on a constant number of degrees of freedom, it may be

appropriate to introduce an average upcrossing frequency. The first measure of frequency that came to

mind is basically the average of the rate of change of h with time, ḣ normalized with h itself. Hence, the

average frequency of events, determined by the average upcrossing frequency, becomes

〈 fup〉= 〈ḣ/h〉=
∫ ∞

0
dh

∫ ∞

0
dḣ p(h, ḣ) ḣ/h

where p(h, ḣ) is the joint p.d.f. of h and ḣ. Making use of the joint pdf of h and ḣ in Eq. (18) and

performing the integrations one immediately finds the simple result

〈 fup〉= 1

and the average number of events becomes

N = 〈 fup〉T ∗
L = νω̄TL.

This result reflects that the number of degrees of freedom is determined by the number of wave groups.

It is emphasized that I have only made plausible how N depends on the relevant parameters. To some

extent the result is uncertain because I have made the choice to connect the number of events with the

average upcrossing frequency.

An alternative method to obtain the maximum envelope wave height distribution has been suggested by

Naess (1982). His approach is based on the reasonable assumption that for envelope time series the

number of level upcrossings by the envelope ρ(t) is asymptotically Poisson distributed when the level

height increases. In Janssen (2015a) it has been shown that, in particular for the tail of the maximum

wave height distribution, Naess’s idea results for linear waves in very good agreement with Monte Carlo

simulations of the p.d.f. of maximum envelope wave height.

Naess (1982) states, based on Cramér’s theorem, that if η(t) is a stationary Gaussian process, satisfy-

ing certain mild restrictions, then the number of level upcrossings by η(t) is asymptotically Poisson

distributed when the level height increases. Naess assumes that this then also holds for the associated

envelope process. Let fup be the mean frequency of upcrossings of the level hc, then for a Poisson process

P = Prob{h ≤ hc;0 ≤ t ≤ T ∗
L }= e− fupT ∗

L .

The average frequency with wich h(t) crosses a reference level hc with a positive slope, hence positive

ḣ, is then given by

fup =
∫ ∞

0
dḣ ḣp(hc, ḣ),

8 Technical Memorandum No. 813
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and substitution of (18) and carrying out the integration gives

fup =
2hc√

2π
e−2h2

c .

We now fix T ∗
L and denote by H = max(h) for time t ∈ (0,T ∗

L ). Using this in the cdf P one finds

PH(h) = exp{−hNslce−2h2}, (20)

where PH denotes the probability distribution function of maximum wave height H, and,

Nslc = 2T ∗
L /

√
2π (21)

is the number of (up)crossings at the significant level h= 1 (Here, the subscript ’slc’ stands for significant

level crossings). The maximum envelope height distribution then follows from pmax(h) = dPH/dh, or,

pmax = (4h2 −1) Nslc e−2h2

PH(h), where h ≥ 1

2
. (22)

The restriction h ≥ 1
2

is added in order to prevent the pdf from becoming negative. In addition, note that

the approach by Naess is only valid for large level crossings, presumably because for large levels the level

upcrossings are statistically independent since these are rare events. An important point to make is that in

the present result the dependence of the average number of wave groups N on the reference level has been

taken into account, while in the result (19) N has been assumed a constant. As a consequence, the large

h behaviour of (22) differs from (19) because it involves an additional factor h. This different asymptotic

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
h

0.01

0.1

1

p
(h

)

MC Envelope (windsea nu = 0.40)

Goda (Eq.  (19))

Naess (Eq. (22))

Figure 2: The pdf of maximum envelope wave height for ’old’ wind sea (γ = 1). The duration of the time series

is 10 wave periods. Shown is the comparison between results from Monte Carlo simulations, and the theoretical

result from Eq. (19) and Naess’ (1982) Eq. (22). In the Monte Carlo simulations both amplitude and phase of the

waves are regarded as stochastic variables.

behaviour of the two results for maximum wave height distribution is born out by a comparison of (22)

and (19) with Monte Carlo simulations of the sea state with a Pierson-Moskovitz spectrum, as shown in

Fig. 2. Here, it is important to point out that a Monte Carlo simulation was performed where amplitudes

are drawn randomly from a Rayleigh distribution while phases were drawn from a uniform distribution.

Fig. 2 shows clearly that the Naess expression for the maximum envelope waveheight distribution is in

better agreement with the Monte Carlo result, in particular for the tails of the distribution.
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2.4 Maximum envelope wave height: nonlinear extension and expectation value.

In the previous sections we have found that for linear waves Naess’ expression is adequate in describing

the maximum envelope wave height distribution. The extension towards nonlinear waves is not trivial,

however, because it requires deriving the joint probability distribution of h and ḣ in the weakly nonlinear

case. In principle this can be done but it is simply a matter of a lot of work. Therefore, at the moment

I can only make an educated guess of the form of a maximum envelope wave height p.d.f., based, of

course, on the findings thus far.

I will do the following discussion both in terms of the wave energy E = 2h2, and in terms of the envelope

wave height h. Based on Eq. (20) I posit that the maximum envelope wave height distribution has the

form

pmax(h) =
dG

dh
exp(G ), (23)

where G involves the stretched exponential

G =−N exp(−z), z =−α +
√

α2 +βE. (24)

and, in keeping with Naess’ approach, the number of degrees of freedom depends on the reference level,

i.e.

N = Nslc

(

E

2

)1/2

(25)

where Nslc is given by (21). Finally, the parameters α and β follow, see Eqns. (11-15), from matching

the stretched exponential distribution with the weakly nonlinear c.d.f. of (9) so that the fitting parameters

depend on skewness and kurtosis of the envelope time series.

An important quantity to measure the extremity of an event is the exceedance probability that energy or

wave height is larger than a critical value. Using (23) one finds

P(h > hc) =
∫ ∞

hc

dh pmax(h) = 1− exp(G ). (26)

This quantity is very sensitive to the tail of the maximum envelope wave height distribution, but it gives

important information on, for example, the probability that waves hit the lower deck of an oil rig.

A more robust indicator of extreme events is the expectation value of maximum envelope wave height.

It is here defined using the expectation value of maximum wave energy 〈Emax〉, defined as

〈Emax〉=
∫ ∞

0
dE E pmax(E), (27)

with

pmax(E) =
dG

dE
expG . (28)

Then, maximum wave height is defined as

〈Hmax〉=
√

1

2
〈Emax〉, (29)

as E = 2h2.
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Now it should be realized that the maximum energy distribution pmax(E) is a very narrow distribution.

For example the dependence of the number of degrees of freedom N(E) on energy E is fairly weak

compared to the stretched exponential function exp(−z). As a consequence, the function N(E) of (25)

may be approximated by N(〈E〉) and is regarded as a constant in the integration. In that event, for large

N the integral may be evaluated almost exactly (with error of O(exp−N)) with the result

〈Emax〉=
1

β
[G2 −2G1 (α + logN)+ logN (2α + logN)] , (30)

where N = Nslc

√

〈Emax〉/2, hence Eq. (30) is an implicit relation for 〈Emax〉. The symbols Gn, n = 1,2
denote integrals involving exponentials and logarithms. These are related to the Gamma function Γ(1+z)
and its derivatives,

Γ(1+ z) =
∫ ∞

0
tze−tdt =

∫ ∞

0
ez log te−tdt,

and therefore

Gn =
dn

dzn
Γ

∣

∣

∣

∣

z=0

=
∫ ∞

0
logn t e−tdt,n = 1,2,3, ...

It may be shown that G1 = Γ′(1) =−γ , while G2 = Γ′′(1) = γ2 +π2/6.

Although (30) is an implicit equation for the expectation value of maximum wave energy, it is straight-

forward to solve it by iteration. In practice, this iteration scheme converges very quickly, only 5 iteration

are needed at the most. This follows from a comparison with results from a numerical computation of

the integral (27) where after 5 iterations agreement up to four digits was achieved.

Finally, it should be emphasized that the expression (30) is very elegant, and, compared to previous

work (cf. Janssen, 2015a), it is much simpler. This is, of course, because of the use of the stretched

exponential for the ’parent’ distribution for envelope wave height. In addition, it should be noted that for

a Gaussian sea state, which is achieved by taking the limit of α → ∞ (while realizing that β = 2(α +1))
the expression for maximum wave energy simply becomes

〈Emax〉= γ + logN.

3 Parametrization of skewness and kurtosis.

In the present operational system parametrizations for skewness and kurtosis for free waves and bound

waves are used in the estimation of probabilities for extreme events and for the expectation value of

maximum envelope wave height. Strictly speaking, these parametrizations are only valid for the case

of deep water. A shallow water parameterization is highly desirable because most off-shore operations

take place in finite depth. We attempt to find these parametrizations by assuming, on the one hand, that

the stats obtained from the general formulation for arbitrary spectra is the truth, while the approximate

formulae for skewness and kurtosis are obtained by adjusting parameters in the corresponding narrow-

band approximations in such a way that a reasonably good agreement with the truth is obtained.

Let us first discuss results for skewness and kurtosis using the general formulation for arbitrary spec-

tra, which is then followed by a presentation of the simple parametrisations of the statistics of waves.

Simulated WAM spectra were taken from two shallow water cases where freak wave events have been

observed, namely the Draupner freak wave event from the 1rst of January 1995, occurring at 15:20, and
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the Andrea storm which occurred on midnight of the 9th of November 2007. The Draupner event was

hindcasted by Cavaleri et al. (2016) using the most recent version of the ECMWF coupled ocean-wave,

weather forecasting system which has a resolution of 10 km in the horizontal and has 137 layers in the

vertical. Just recently, L. Bertotti and L. Cavaleri have produced, in addition, a simulation for the Andrea

storm with the same coupled system. In both cases the water depth at the location where the freak wave

events occurred was 70 m and the dimensionless depth kph, with kp the peak wave number and h depth,

was during the extreme event in the intermediate depth regime as the range of dimensionless depth varies

between 1.45 and 1.9.

The simulated spectra have, for an operational system, a fairly high resolution of 36 frequencies and 36

directions, where the frequencies are on a logarithmic grid and the directions are on a linear grid. In Fig.

3 a few examples of spectra are shown, one at the time of the Draupner event, one at the time of the

Andrea freak wave and one example of a broad spectrum taken from the Andrea storm at noon on the 8th

of November 2007, illustrating that both narrow and broad-band spectra are present in the time series.
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Figure 3: Left panel: Wave spectrum for Draupner event at 16:00 hrs on 1-1-1995; Middle panel: Andrea main

event at midnight of 9-11-2007; Right panel: broad-band spectrum 12 hrs before the Andrea event.

An important point to note is that the wave spectra at the time of the extreme events have a more narrow

directional distribution than a typical wind sea in deep water. In order to appreciate this point I show in
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Figure 4: Left panel: Wave spectrum after one day wind forcing in shallow water; Middle panel: Wave spectrum

after one day forcing in deep water; Right panel: Shallow water run with bottom friction switched off.

Fig. 4 the wave spectrum obtained from a one-gridpoint model run after 24 hours forcing with a wind

speed of 18.45 m/s. In the left panel I show the result when depth h = 70 m, which corresponds to

kph = 1.9, while the middle panel shows the result for deep water. Clearly, the deep water run gives a

broader spectrum.
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An interesting question to ask is which physical process is responsible for the narrowing of the direc-

tional spectrum in shallow water. In the context of a single gridpoint model it is fairly straightforward

to investigate this issue. The first candidate is the wind input source function, but it turned out that the

directional width of the growthrate by wind was very similar in deep and shallow water. The next can-

didate that was studied is the nonlinear transfer which contains a depth dependent amplification factor.

Switching off the amplification factor did not result in an appreciable change of the width of the direc-

tional spectrum, however. Finally, it turned out, as shown in the right panel of Fig. 4, that switching off

the bottom friction source function in the shallow water run explains to a large extent the reason why in

shallow water the directional spectrum is narrower.

In order to quantify the differences I would like to introduce a robust measure of directional width near

the peak of the spectrum. Usually, the directional width σθ is estimated using frequency dependent

moments, i.e.

m0 =
∫

dθF(ω ,θ), m1 =
∫

dθ cos(θ −θ)F(ω ,θ),

with θ the mean direction and F(ω ,θ) the two-dimensional wave spectrum. However, this is not such

a robust measure and therefore I integrate the frequency dependent moments over a region around the

angular peak frequency ωp of width 2∆ω , i.e.

m0 =
∫ ωp+∆ω

ωp−∆ω
dω
∫

dθF(ω ,θ), m1 =
∫ ωp+∆ω

ωp−∆ω
dω
∫

dθ cos(θ −θ)F(ω ,θ), (31)

and the measure of directional width becomes

σθ =
√

2(1−R1), R1 = m1/m0 (32)

The above definition of directional width will also be used in a simple parametrisation of dynamic kur-

tosis. Using the measure in (32) it is found that for the Draupner spectrum in Fig. 3 σθ = 0.32 while for

the deep-water case of Fig. 4 σθ = 0.55, so there is a considerable difference in width. This difference

is quite important for the estimation of the value of the dynamic kurtosis, as it depends on the square of

directional width.

3.1 Results for skewness and kurtosis from exact computations.

Using the exact expressions given in the Appendix, i.e. (A7), (A22) and (A25), time series for skewness

and kurtosis have been obtained from the simulated spectra for the Draupner and Andrea case. They are

displayed in Fig. 5.

Noting that the Draupner freak wave occurred at 16:00 hrs while the Andrea event occured at 24 hrs,

there is a striking difference between the two cases. During the Andrea event there is a clear sign that

skewness and kurtosis have a maximum at the time of the freak wave event whereas for the Draupner

wave this is only marginally evident for the skewness. In particular, the time series for kurtosis is fairly

featureless.

Realizing that kurtosis consists of a dynamic part and a bound-wave part it is therefore also of interest to

study their respective timeseries. They are displayed in Fig. 6.

The Figure shows that for both the Draupner event and the Andrea wave the bound-wave part of kurtosis

reached an extremum at the time of the occurrence of the freak wave, while the dynamic part of the
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Figure 5: Evolution in time of skewness factor C3 and kurtosis factor C4 for the Draupner case (left panel) and

the Andrea storm (right panel).
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Figure 6: Evolution in time of dynamic and bound-wave part of the kurtosis factor C4 for the Draupner case (left

panel) and the Andrea storm (right panel).

kurtosis only reached a maximum for the Andrea freak wave event. For the Draupner time series the

dynamic kurtosis is fairly flat and even reaches a minimum at the time of the freak wave event. To

conclude the discussion of the kurtosis time series it is noted that for the Andrea storm the range of

kurtosis is quite large and even becomes negative at 12 hrs. At that time the angular width of the wave

spectrum is quite large as shown in the spectral plot of Fig. 3. Therefore, dynamic kurtosis has a sensitive

dependence on angular width, much more so than the bound-wave part.

Finally, as already pointed out in the Appendix, there is a marked difference between the statistical

information derived from the free waves and the bound waves. For given wave spectrum bound-wave

skewness and kurtosis are independent of time, whereas the dynamic kurtosis evolves in time. This is

shown in Fig. 16 which displays the evolution in time of dynamic kurtosis for a narrow-band wave

train, but it is also very much the case for the Draupner freak wave and the Andrea storm using the

expression for the kurtosis valid for arbirary spectra. In Fig. 7, I have plotted for all the given simulated

spectra the evolution of dynamic kurtosis as function of the dimensionless time τ = δ 2
ωωpT , with δω =

σω/ωp. This is the appropriate evolution time scale which follows from the narrow-band considerations

in the Appendix. Because realistic spectra are not quite narrow-band I have chosen a relative width of

the spectrum which is representative for the whole spectrum. I have therefore chosen the definition of
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Figure 7: Evolution of dynamic kurtosis κdyn
30 as function of the dimensionless time τ = σ2

ω ωpT , where σω is the

relative width of the frequency spectrum and ωp is the angular peak frequency. Left panel shows the Draupner

case while the right panel shows the Andrea storm.

spectral width introduced by Longuet-Higgins (1983), i.e. δω = ν = (m0m2/m2
1 − 1)1/2, see just below

Eq. (18). Since in practice δω is of the order of 0.3 the time scale of 200 units in the graph corresponds

to 300 wave periods. It is seen that on this relatively long time scale the solution is still smooth, but

for longer time scales the solution becomes erratic. In agreement with an earlier remark it is seen that

the range in kurtosis values for the Draupner event is fairly small since the left panel of Fig. 7 shows a

surprisingly universal time behaviour. However, this is much less the case for the Andrea storm, shown

in the right panel, hence the range of kurtosis values is much larger.

The question now is how to deal with the time dependency of the dynamic kurtosis, because I would

like to have a simple measure for estimating the severity of the sea state. The most straightforward

way to deal with this is to take the mean value of the kurtosis obtained from an average over the whole

period shown in the Figure. Note that in the calculations the assumption has been made that initially the

dynamic kurtosis vanishes, and, therefore, the Figure basically gives the response of the dynamical wave

system to rapid pertubations caused by e.g. a rapid increase of wind or the passage of a frontal system.

3.2 Probability estimates of extreme events using exact computations.

Let us now try to establish how extreme the Draupner and Andrea freak waves are. For the Draupner

case Miguel Onorato provided me, by using the Hilbert transform of the actual sea surface elevation

time series, with the envelope time series ρ and by using the fact that envelope wave height is twice the

envelope it was found that the observed maximum envelope wave height was 3.1 times the significant

wave height, or in real terms hmax = 35 m. For the Andrea storm I had no access to time series so I

estimated the maximum envelope wave height by taking twice the maximum crest height, which amounts

to 3.26 times the significant wave height (Magnusson and Donelan, 2013). Clearly, we are dealing here

with very extreme events.

In order to establish how rare the Draupner and Andrea events are, it should be realized that a wave

model gives the ensemble mean of the sea state in a box surrounding the point of interest. This remark

is also valid for the probabilities of events, we only know the ensemble average probability distribution

function for the envelope wave height, therefore it is not possible to provide estimates of probabilities

at a certain location. On the other hand, the statistics (e.g. skewness and kurtosis) derived from a short
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observed time series are not representative for the stats of a domain of the size of the chosen resolution.

This is readily seen from the Draupner timeseries by estimating the kurtosis factor C4. It is found that

according to the observed time series C4 is about 0.5 which is 40 times larger than the result from the

exact computations presented in the left panel of Fig. 5.

Therefore, one can only answer how likely such an event is, given the spatial resolution of the wave

model (in this case 14 km) and given the present knowledge of the physics of freak wave generation. I

therefore concentrated on the maximum wave height distribution and I determined the exceedance prob-

ability Pmax(hmax ≥ hobs) that in a domain of 14× 14 km such an extreme event occurs. This requires

that one needs to count the number of events in a spatial domain. This is not a trivial matter and at

the moment results are only known for the surface elevation of a linear sea state which has a Gaussian

p.d.f. See for this the work of J. Adler (1981) which has been further discussed by Baxevani and Rychlik

(2006) and implemented by Fedele (2012) and Benetazzo et al. (2015). In the present case I need to esti-

mate the number of events for a completely different problem, namely for the maximum envelope wave

height which obeys in the lowest approximation a Rayleigh distribution, but nonlinear effects related to

skewness and kurtosis are important as well. Such an estimate is not available at the moment. For lack

of alternatives I have therefore used the Baxevani and Rychlik estimates, and they give for a domain of

14×14 km a surprisingly large number of events, in the order of 500,000 or more.
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Figure 8: Evolution in time of simulated exceedance probability Pmax(h
obs
max) for hobs

max = 35 m (Draupner, left panel)

and for hobs
max = 31.8 (Andrea storm, right panel). For comparison the corresponding results from linear theory are

shown, whereas also the impact of dynamic kurtosis and total kurtosis is depicted.

In Fig. 8 the timeseries of exceedance probability Pmax(hmax ≥ hobs
max) for the Draupner freak wave (left

panel) and the Andrea storm (right panel) are shown. It is clear that when all nonlinear effects are

included that these events are rather plausible as the probabilities are already of the order of 6-8 %, while

according to linear theory these extreme events are quite improbable.1 In the Figure I have also shown

exceedance probabilities when dynamic kurtosis is omitted in the calculation and when both dynamic

and bound-wave kurtosis are omitted. In particular in the case of the Andrea storm this would result in a

considerable reduction of probabilities. For dynamic kurtosis the reduction is a factor of 2 while for total

kurtosis the reduction is a factor of 5. All this suggests that it is important to include deviations from

Normality caused by finite skewness and kurtosis.

1These probabilities can be further enhanced when the time dimension is taken into account as well. Taking a realistic

duration of 20 minutes and a peak period of 12 seconds these probabilities are further enhanced by a considerable amount.
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3.3 Parametrisation of the bound skewness and kurtosis.

The parametrisations for the bound-wave skewness and kurtosis factors Cbound
3 and Cbound

4 have been

guided by the narrow band expression (A24) and (A27), presented in the Appendix. This approach

seems to work quite well, as will be seen in a moment, because the bound-wave stats are insensitive to

the directional width of the wave spectrum. This has been checked numerically for JONSWAP spectra

with a variable directional width.

After some trial and error the following parametrisation for the skewness factor C3 and kurtosis factor C4

was found:

Cbound
3 = 2.24m

1/2

0 (α +∆) ,

Cbound
4 = 7.28m0

{

γ +α2 +(α +∆)2
}

, (33)

where the wavenumber and depth dependent parameters α , γ and ∆ are defined in Eq. (A20) and m0 is

the zeroth moment of the frequency spectrum. It is noted that it is important to choose as wavenumber

a characteristic wavenumber that reflects that the wave spectrum is broad-banded. As a first guess I

tried to choose a characteristic wavenumber k̄ that follows from the inverse of the dispersion relation

aω̄ = ω(k̄,h), where ω̄ = m0/m−1 and a is a tuning parameter. Results for skewness and kurtosis are

very sensitive to the choice of this tuning parameter. In the end I settled for the choice a = 0.9 which, for

deep-water waves, implies that the characteristic wavenumber k̄ is larger by about 25% when compared

to the peak wavenumber kp. Thus, in the formulae for α , γ and ∆, for example, the wave number k0

is replaced by k̄, while, to be consistent, this is also done for all wave number dependent factors in the

dynamic kurtosis parametrisation of the next section.

These parametrisations compare very favourably with the exact computations from the Draupner and

Andrea cases, as shown in the scatter plots of Fig. 9.
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Figure 9: The left panel shows the comparison of parametrized skewness factor Cbound
3 against exact computation

from the Draupner and Andrea events, while the right panel shows the comparison for the kurtosis factor Cbound
4 .

Quantitatively, the agreement is impressive as follows from a linear fit of parametrized results against

exact computations which gives correlations of more than 96%. Nevertheless, it is noted that the scatter-

plot of the skewness factor shows two modest outliers which correspond to the broad angular distribution

cases of the Andrea storm.
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3.4 Parametrisation of the dynamic kurtosis.

The parametrization of the dynamic part of the kurtosis has been guided by the definition (A15) and

the narrow-band result (A17), which is strictly speaking only valid for Gaussian spectra and gives an

estimate of the maximum of dynamic kurtosis. Rather then the maximum value to estimate the severity

of the sea state, I will use its average value over a time span of about 300 wave periods, as already

suggested when discussing Fig. 7. I have tried to stay as close as possible to the narrow-band result, and

I paid particular attention to the replacement of the definitions of the Benjamin-Feir Index and the ratio

of the square of directional width and frequency width to appropriate forms for broad-banded spectra.

After some extensive trial and error I arrived at the following results: The dynamic kurtosis factor is

given by

C
dyn
4 = J(R)BFI2, (34)

where

J(R) = NR0

(α −R)

R+R0

, N =
π

3
√

3
, (35)

with R0 = 7.44
√

3/4π3. The threshold value for R, indicating a change in sign of the dynamic kurtosis, is

given by α = 1.1. The Benjamin-Feir Index is defined in Eq. (A13), where the relative angular frequency

width is obtained from Goda’s peakedness factor Qp defined as

Qp =
2

m2
0

∫

D

dω ωE2(ω), (36)

with E(ω) the angular frequency spectrum and the integration domain D consists of all frequencies

for which E(ω) > E(ωp)/4 (Janssen and Bouws, 1986). The relative angular frequency width δω then

follows from

δω =
1

Qp

√
π
. (37)

This definition of width emphasizes the peak region of the wave spectrum, which is thought to control the

Benjamin-Feir instability. In practice, it turns out, however, that with this definition of Qp noisy results

are obtained. It was therefore decided to integrate over the whole frequency domain E(ω) > 0 and to

reduce the result by a factor 0.65 to mimic the original definition of Qp.

In the Benjamin-Feir Index the steepness of the waves is given by ε = k̄m
1/2

0 . The characteristic wave

number k̄ is also used in the depth dependent factor of (A13).

Finally, the parameter R which is basically measuring the importance of directional width with respect

to the frequency width is given in Eq. (A14). Here, the directional width is determined according to

Eq. (32), while, as the damping of the Benjamin-Feir instability is caused by the broad-band aspects

of the wave spectrum, the relative frequency width is given by δω = ν = (m0m2/m2
1 − 1)1/2, where

mn,n = 0,1,2 are the moments of the frequency spectrum. A comparison of the results obtained from the

above parametrization and the exact computations using spectra from the Draupner and Andrea events

is shown in the left panel of Fig. 10. There is a fair agreement but, clearly, compared to for example

the bound-wave kurtosis, the agreement is not as good. Fortunately, the probability calculations only

involve the total kurtosis, and as shown in the right panel of Fig. 10, this shows a better agreement with

correlations of 91%.

As an important check I have compared in Fig. 11 exceedance probabilities obtained with the parametri-

sations for skewness and kurtosis with the exact calculations and a satisfactory agreement is to be noted.
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Figure 10: The left panel shows the comparison of parametrized dynamic kurtosis factor C
dyn
4 against exact

computations using spectra from the Draupner and Andrea events, while the right panel shows the comparison for

the total kurtosis factor C4.
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Figure 11: Comparison of parametrized exceedance probability Pmax(h
obs
max) for hobs

max = 35 m (Draupner, left panel)

and for hobs
max = 31.8 (Andrea storm, right panel) with numerical computations using the exact theory.

4 Pre-operational results.

The final step I have taken is to check results of the here obtained parametrizations for skewness and

kurtosis in the context of the ECWAM wave prediction system. Firstly, I have studied results from a

single grid-point wave model in deep and shallow water which illustrates the sensitive dependence of

the dynamic kurtosis on the normalized directional width R. Secondly, I have obtained statistical results

using forecast ECWAM spectra from one synoptic time and I have studied relations such as the depen-

dence of skewness and kurtosis on the wave age parameter cp/U10 and the dependence of the normalized

maximum envelope wave height on the Benjamin-Feir Index and the dimensionless directional width R.

4.1 Single gridpoint Results.

The parametrization of the dynamic kurtosis is given in Eqns. (34) and (35). It shows that dynamic

kurtosis depends on the square of the Benjamin-Feir Index BFI appropriately defined by including shal-
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low water effects. In addition, it shows that dynamic kurtosis reduces when, compared to the frequency

width, the directional width of the 2D wave spectrum increases, where the effect of directional width is

measured by the dimensionless directional width R. Suppose that initially the wave spectrum has a nar-

row directional distribution such that R < α . Then, the nonlinear interactions will broaden the directional

spectrum in such a way that R increases and hence the dynamic kurtosis decreases until for large time an

’equilibrium’ condition is obtained for which the dynamic kurtosis vanishes. Therefore, large deviations

from the Gaussian equilibrium, and hence large values of kurtosis, are only expected for relatively short

times.

In order to illustrate the sensitive dependence of results from dynamic kurtosis on the dimensionless

width R, I have run the one-gridpoint version of the WAM model for deep-water and shallow water

(with depth of 40 m). The windspeed was constant and had the value of 18.45 m/s. The wave spectrum

was discretized in the same manner as the operational ECWAM model and therefore consisted of 36

frequencies and 36 directions. As initial condition a JONSWAP spectrum was chosen with a cos-square

directional distribution. The directional distribution is so broad that dimensionless directional width is

larger than the threshold value α , hence dynamic kurtosis is initially negative. In Fig. 12, two results

are shown from this experiment, namely a comparison of the evolution in time of the dimensionless

angular width of the spectrum for the deep and the shallow water case and the consequent evolution of

the dynamic kurtosis. It is noted that shallow water effects may play an important role in the formation
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Figure 12: Left Panel: Comparison of time-evolution of normalized width parameter R for deep and shallow

water. The threshold value of α = 1.1 is indicated as well. Right panel: Comparison of time-evolution of dynamic

kurtosis for deep and shallow water.

of freak waves as in deep-water the dynamic kurtosis is negative resulting in a small defocussing of the

weakly nonlinear wave train, while in shallow water the wave train experiences focussing because the

dynamic kurtosis is positive after time equals 3 hours. Inspecting the time evolution of the normalized

width R it should be clear that this different behaviour in deep and shallow water is connected to the

findings in Section 3 that shallow water spectra are, compared to deep water, more narrow. This has,

according to the left panel of Fig. 12 important consequences because for deep water R is always larger

than the threshold value of R, while in shallow water R gets below the threshold value, giving focussing.

4.2 A Synoptic Example.

As a final illustration of the properties of the new version of the freak wave warning system results of a

single forecast, namely the one-day forecast of the 19th of December 2017, will be briefly discussed.
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Figure 13: Skewness factor C3 (left panel) and kurtosis factor C4 (right panel) versus wave age parameter

χ = cp/U10. Note that there are many occasions where the directional wave spectrum is so broad that kurtosis is

slightly negative.
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Figure 14: Left Panel: Dependence of expectation value of normalized maximum wave height on the square of

the Benjamin-Feir Index (left panel) and on normalized directional width R (right panel). The error bars give the

width of the maximum wave height distribution at the BFI2 or R value of interest

A number of integral parameters such as significant wave height and several versions of mean period were

retrieved which allowed the determination of the moments m−1,m0,m1,m2 needed for the specification

of the spectral frequency width parameters. In addition, parameters such as the Benjamin-Feir Index

and the angular width were retrieved, enabling the determination of the skewness and kurtosis at every

gridpoint and also the determination of the expectation value of maximum envelope wave height.

In Fig. 13, results for skewness and kurtosis from a one-degree retrieval are plotted as function of a

parameter measuring the stage of development of the sea state, namely the wave age χ = cp/U10. For

young waves, with χ < 1 the envelope skewness C3 reaches values of 0.1 which corresponds to a surface

elevation skewness which is three times larger. The behaviour of the kurtosis parameter C4 which is the

sum of bound-wave kurtosis and dynamic kurtosis is somewhat more complex. Although the bound-wave

part of kurtosis is always positive, dynamic kurtosis may become negative, which occurs for spectra with

a broad directional distribution. As a consequence, in many cases (50% or more) kurtosis turns out to be

negative, giving compared to the Gaussian sea state a reduced risk of the occurence of freak waves. On

the other hand, for narrow directional spectra, kurtosis is positive, reaching values of up to 0.1, resulting
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in an enhanced risk for freak waves. Note that these large values of kurtosis are caused by the dynamic

part of kurtosis. If one would disregard the dynamic part in the kurtosis calculation than kurtosis would

always be positive but would reach at most values of 0.02.

In the next plot, Fig. 14, I concentrate on the expectation value of maximum envelope wave height for

a 20 min. time series and I study its dependence on parameters such as the square of the Benjamin-

Feir Index, BFI2, and the dimensionless directional width R. These relations are obtained by collecting

maximum envelope wave height data as function of a discretized version of the independent parameter

and by plotting the bin-average. In agreement with expectations and with results of Burgers et al. (2008),

based on observations of normalized maximum wave height obtained from AUK platform in the central

North Sea, the expectation value of maximum envelope wave height is seen to increase with increasing

Benjamin-Feir Index. On the other hand, maximum wave height is seen to decrease, as expected, with

increasing dimensionless directional width.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Hmax/Hs

0.001

0.01

0.1

1

p
d
f 

(H
m

ax
/H

s)

Nonlin
Exponential fit

Lin

Figure 15: Global maximum wave height distribution obtained by a random draw of Hmax for given number of

waves and given skewness and kurtosis. Including skewness and kurtosis shows that the tail of the distribution is

exponential. The distribution according linear theory is shown as well.

Furthermore, in Janssen and Bidlot (2009) a detailed comparison between observed and modelled distri-

bution of maximum envelope wave height has been made. As argued by these authors, a way to simulate

the observed maximum wave height distribution is to start from the theoretical pdf of maximum wave

height, the explicit form of which is given in Eqns. (23)-(25), and to generate from this pdf for given

number of waves Nslc and given skewness C3 and kurtosis C4 a random draw of maximum wave height.

The usual procedure for this is that one obtains a random draw of maximum envelope wave height from

the condition that the cumulative distribution is a random number between 0 and 1. The resulting mod-

elled distribution function is plotted in Fig. 15. It is remarked that the tail of the maximum wave height

distribution is basically the number of degrees of freedom N (see (25)) times the envelope wave height

pdf (22). Therefore, for large values of maximum envelope wave height the distribution function is an

exponential. As can been seen from the present fit, the simulated maximum wave height distribution
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closely follows the exponential fit, which on a logarithmic plot is a straight line. In order to illustrate

effects of nonlinearity, also simulated maximum wave height distribution without nonlinear effects is

shown, and clearly, nonlinear effects are seen to play an important role for the extreme events.

Finally, the present approach has been based on an analysis of time series using the envelope. This differs

from the usual method whereby one considers wave height or crest height. In these latter approaches an

extreme event is called a freak if wave height is larger than 2.2 times the significant wave height or,

alternatively, if the crest height is larger than 1.25 times the significant wave height. In my opinion, the

envelope waveheight follows closely the crest of the waves and therefore, in the context of the envelope

approach, I would call an extreme event a ’freak’ if the maximum envelope wave height is 2.5 times

the significant wave height HS = 4
√

m0 with m0 the zeroth moment of the wave spectrum. Adopting

this definition of a freak wave it is therefore of interest to determine the probability that maximum

normalized envelope wave height is larger than 2.5. Based on the Global distribution shown in Fig. 15,

this probability is according to linear theory about 2.5× 10−3 while according to nonlinear theory, this

probability is a factor of 2.5 larger, namely 6.6×10−3.

5 Conclusions.

An overview is presented of the theoretical probablistic approach of extreme events, which focusses on

the statistical properties of wave energy. Here, wave energy is measured from timeseries of the wave

envelope, where the wave envelope is obtained from the surface elevation time series η and the corre-

sponding Hilbert transform ζ . For such a signal, the envelope wave height distribution may be obtained

using as starting point the characteristic function of surface elevation and its Hilbert transform. This

approach has a restricted range of validity and in order to capture really extreme events an exponential

tail has to be added. A procedure to accomplish this has been proposed and results have been validated

against Monte Carlo simulations (Janssen, 2015b).

A key quantity to characterize extreme events is the p.d.f. for maximum envelope wave height. Here

it is shown that, based on a comparison with Monte Carlo simulations, for envelope wave height the

most appropriate approach is the one suggested by Naess (1982). This approach has the added advantage

that with the stretched exponential distribution a really simple expression for the expectation value of

maximum envelope wave height may be obtained.

In the Appendix a brief overview is given of the analytical formulation of statistical quantities such as

skewness and kurtosis in terms of multi-dimensional integrals involving the combination of interaction

coefficients and wave spectra. Numerical evaluation of these integrals is in principle possible but requires

a considerable amount of computing power (On my PC the evaluation of the stats for the Draupner case

and the Andrea event took 2 hours). For an operational implementation parametrization of the skewness

and kurtosis is highly desirable. In this note I have developed such a parametrization of the wave stats

and a satisfactory agreement with the computations using the analytical theory has been obtained.

The time series for the exceedance probabilities of maximum wave envelope height suggest that for an

area of the size of the resolution of the wave model it is plausible that the Draupner wave and the Andrea

event did happen. In addition, knowledge of the deviations from Normality as expressed by skewness

and kurtosis play an important part in ’explaining’ these events. It is emphasized once more that for a

quantity such as envelope wave height it is essential that effects of of both bound-wave and dynamic

kurtosis need to be included.

In fact, at first I was somewhat surprized that dynamic kurtosis played such an important role in the
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freak wave events discussed in this note. First of all, with the work of Janssen and Onorato (2007) in

mind, one would expect that the Benjamin-Feir instability plays a relatively minor role for surface gravity

waves in intermediate water depth, because the relevant interaction coefficient vanishes for kh = 1.363

and changes sign for even lower dimensionless depth. However, this is only true for one-dimensional

modulations. Hayes (1973) has shown that for two-dimensional modulations there is always instability,

though in practice growthrates are vanishingly small for kh < 0.5. The consequences of this are dis-

cussed in Appendix B, resulting in a parametrization of the nonlinear interaction coefficient that depends

explicitely on spectral width in frequency direction space. The upshot is that even for shallow water

waves Benjamin-Feir instability may exist and may give a finite contribution to the kurtosis of the sea

state.

Secondly, in intermediate water depth wave spectra are much more narrow in direction than in the deep

water case. This follows from a plot of the spectra which suggests that the directional distribution of the

spectra in waters with dimensionless depth kph = 1.5− 2 is much narrower. And experimentation with

the single-gridpoint model suggests that the cause for the narrower spectra is connected to the bottom

friction term. Perhaps, bottom friction, which mainly affects and removes energy from the long waves,

disrupts the normal nonlinear energy fluxes in the spectrum to the the long waves to such an extent

that the widening of the angular distribution by the nonlinear transfer is halted. However, more work is

required to better understand the role of bottom friction in the formation of the directional distribution.

Finally, it should be pointed out that, if desired, a very similar approach may be applied to obtain the

statistical properties of the surface elevation. However, the details will be different. For example, the

maximum surface elevation distribution can be described adequately by means of the method suggested

by Goda (2000) but it is still not clear yet how to add an exponential tail to the nonlinear p.d.f. of the

surface elevation. Clearly, more research is required to accomplish this.
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Appendices.

A Skewness and Envelope kurtosis.

As already discussed in Mori and Janssen (2006) and Janssen (2009) skewness and kurtosis consists

of two contributions, one from the free waves and one from the bound waves. The properties of these

contributions differ from each other and therefore they will be discussed separately. For example, while

it is straightforward to obtain the narrow-band limit of the bound-wave part of skewness and kurtosis,

this is not possible for the free-wave part of the (envelope) kurtosis as for the latter the narrow-band

limit does not exist. Therefore, a different approach needs to be followed in order to obtain simplified

expressions for the free-wave part of the kurtosis. In contrast to the bound-wave case, it is found that the

free-wave contribution to kurtosis has a sensitive dependence on spectral shape, it depends, in particular,

on the directional and frequency width.

Following Janssen (2014) we perform a time series analysis in order to evaluate quantities such as the

variance of the surface elevation η and its Hilbert transform ζ and a number of skewness terms and the

envelope kurtosis. Recall that

η =
1

2
(Z +Z∗), and ζ =

1

2i
(Z −Z∗),

where (see Janssen, 2014) the complex function Z is obtained from the canonical transformation by

collecting together terms of similar time-asymptotic behaviour, i.e. Z contains all the terms that vanish

for ℑ(t)→−∞. The canonical transformation is only known as an expansion in steepness ε so we write

Z = εZ1 + ε2Z2 + ε3Z3 with

Z1 = 2

∫ ∞

−∞
dk1 f1a1 eiθ1 , (A1)

where f1 = (ω1/2g)1/2, θ1 = k1 ·x, and

Z2 = 2

∫ ∞

−∞
dk1,2,3 f2 f3 eiθ1 {A2,3a2a3δ1−2−3 +2B2,3a∗2a3H3−2δ1+2−3} , (A2)

while

Z3 = 2

∫

dk1,2,3,4 f2 f3 f4eiθ1 {D1,2,3,4a2a3a4δ1−2−3−4 +C1,2,3,4a2a3a∗4δ1−2−3+4H2+3−4

+C−1,2,3,4a∗2a∗3a4δ1+2+3−4H4−3−2} . (A3)

The interaction coefficients A ,B,C , and D are defined in Janssen (2009). The Heaviside function

H(x) is defined in such a way that H(0) = 1/2 and in the above formulae the argument of the Heaviside

function is a sum of angular frequencies, e.g. H3−2 = H(ω3 −ω2). Note that the term Z1 represents

the contribution of the free waves to the surface elevation, while the terms Z2 and Z3 represent the

contributions by the bound waves. Therefore, the free-wave contribution to skewness and kurtosis is

determined by the statistical properties of Z1, while the other two terms are required to determine the

contributions to bound-wave statistics.

The third and fourth cumulants of surface elevation η and its Hilbert transform ζ are defined as follows:

The third cumulants are

κ30 =
〈η3〉

〈η2〉3/2
, κ21 =

〈η2ζ 〉
〈η2〉〈ζ 2〉1/2

, κ12 =
〈ηζ 2〉

〈η2〉1/2〈ζ 2〉 , κ03 =
〈ζ 3〉

〈ζ 2〉3/2
, (A4)
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while the relevant fourth cumulants are given by

κ40 =
〈η4〉
〈η2〉2

−3, κ22 =
〈η2ζ 2〉
〈η2〉〈ζ 2〉 −1, κ04 =

〈ζ 4〉
〈ζ 2〉2

−3, (A5)

The procedure to obtain explicit expressions for the cumulants is straightforward but laborious. One

substitutes the expressions for η and ζ into the above definitions and evaluates for the bound waves the

relevant integrals under the assumption of a homogeneous, Gaussian ocean surface. In order to find a

non-trivial result for the free waves one needs to obtain from the evolution equation of the free waves the

contribution of the fourth order cumulants, as detailed in Janssen (2003).

A.1 Free Waves.

The free wave case has been discussed extensively by Mori and Janssen (2006). For the free waves the

skewness vanishes while the kurtosis enjoys certain symmetry properties in such a way that κ04 = κ40

while κ22 = κ40/3. Therefore, using (5) and (4) one finds

C
f ree
4 =

1

3
κdyn

40 , (A6)

where κdyn
40 is explicitely given by Janssen (2003) in terms of the directional angular frequency spectrum

E(ω ,θ), i.e.

κdyn
40 =

12g

m2
0

∫

dθ1,2,3dω1,2,3T1,2,3,4

√

ω4

ω1ω2ω3

×G(∆ω , t)E1E2E3. (A7)

Here, G(∆ω , t) is the time-dependent real part of the resonance function, defined by

G(∆ω , t) =
1− cos(∆ωt)

∆ω
,

while the frequency mismatch ∆ω is given by ∆ω = ω1 +ω2 −ω3 −ω4, and the fourth wave number

follows from the resonance condition in wave number space, i.e. k4 = k1 +k2 −k3. The frequency ω4

is obtained by evaluating the dispersion relation at the fourth wavenumber. Eq. (A7) gives the evolution

in time of the dynamic part of the kurtosis for given wave spectrum. In general no solution is known so

a numerical evaluation of this six-dimensional integral is required. I have written software to calculate

κdyn
40 for arbitrary spectra and arbitrary depth h under the restriction that kph > 1. The software has been

validated for a number of special cases of which the solution is known, namely for Gaussian spectra in

the narrow-band approximation.

It should be realized that Eq. (A7) is quite expensive to evaluate because it involves a six-dimensional

integral. With a resolution of 36 frequencies and 36 directions we are looking at 366 = 2.18 Billion

evaluations of the transfer coefficient which is quite substantial. For this reason I inspected before hand

the simulated spectra of the Draupner case. It turns out that a large part of the frequency-direction

space contained small values so that I filtered the evaluation of the integrals accordingly. This filtering

operation reduced the number of evaluations of the transfer coefficient to about 11 million. Therefore, for

a limited number of spectra, the filtering operation makes numerical evaluation of the free wave kurtosis

feasible.

Another point to mention is that the evaluation of the integral involving a rapidly varying resonance

function G is very difficult. For large times the time behaviour becomes erratic although there is, in the

case of general spectra, no criterium available when the numerical solution becomes seemingly chaotic.

In practice, I simply plotted the solution as a function of time and inspected by eye whether the solution

was smooth or not.
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A.1.1 The narrow-band approximation.

Nevertheless, in operational applications the numerical evaluation of the six-dimensional integral is far

too expensive, and an efficient approximation is highly desirable. This efficient approximation is found

using the narrow-band approximation applied to Eq. (A7). In this approximation most of the wave

energy is concentrated around the carrier wave number k0, so that the wave spectrum has a small relative

frequency width δω = σω/ω0 and a small angular width δθ . For surface gravity waves on water of finite

depth h the dispersion relation for the carrier reads

ω0 =
√

gk0T0, T0 = tanhx, x = k0h, (A8)

while the first and second derivative become

vg = ω ′
0 =

1

2
c0

{

1+
2x

sinh2x

}

, c0 =
ω0

k0

, (A9)

and

ω ′′
0 =− g

4ω0k0T0

×Ω′′, (A10)

with

Ω′′ =
{

T0 − x
(

1−T 2
0

)}2
+4x2T 2

0

(

1−T 2
0

)

. (A11)

Note that for any value of the depth h the second derivative is always negative. Finally, the narrow-band

limit of the nonlinear interaction coefficient is given by

T0,0,0,0/k3
0 = Xnl =

9T 4
0 −10T 2

0 +9

8T 3
0

− 1

x

{

(2vg − c0/2)2

c2
S − v2

g

+1

}

+
κ1ν1

µ1k3
0

δ 2
θ

δ 2
θ +αωδ 2

ω

(A12)

with κ1, ν1 and µ1 = c2
S wavenumber and depth dependent coefficients given in (B6), cS =

√
gh the

shallow water wave velocity and

αω =
c2

0

v2
g

(

1−
v2

g

c2
S

)

.

Note that the interaction coefficient consists of three terms. The first two terms are well-known (see e.g.

Whitham, 1974) as the first term is connected with the nonlinear dispersion relation for surface gravity

waves, while the second term is due to effects of wave-induced current caused by one-dimensional,

longitudinal modulations. These two terms are of definite sign so they may cancel each other, which, in

fact, happens for x = k0h = 1.363. The third term is new and is connected to the wave-induced current

caused by two-dimensional modulations. It also has a definite sign and tends to reduce the dimensionless

depth where the nonlinear interaction coefficient vanishes. A complete derivation of this new term and

some discussion is presented in Appendix B. Hence, for intermediate water depth waves the nonlinear

interactions are, because waves are two-dimensional, still expected to play a relatively important role.

In the narrow-band approximation, the evolution of the kurtosis is determined by two dimensionless

parameters. The first one is the shallow water extension of the Benjamin-Feir index. Introducing the wave

steepness ε = k0
√

m0, with m0 the variance of the surface elevation, while δω is the relative frequency

width, the Benjamin-Feir Index BFI is defined as

BFI2 =
8ε2

δ 2
ω

×
(

vg

c0

)2

× T0

Ω′′ ×Xnl (A13)
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Note that in the deep-water limit one recovers the usual expression for the Benjamin-Feir Index, as

limk0h→∞ BFI2 = 2ε2/δ 2
ω .

The second dimensionless parameter measures the importance of directional width δθ with respect the

frequency width δω . In deep water it is defined as R = δ 2
θ /2δ 2

ω while in general one has

R = 4
δ 2

θ

δ 2
ω

×
(

vg

c0

)3

× T 2
0

Ω′′ (A14)
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Figure 16: Evolution of normalized kurtosis versus time for different values of R. Results using the numerical

solution of (A15) are shown as the full lines, while the circles denote the analytical solution from Fedele (2015).

Applying now the narrow-band approximation to Eq. (A7) the parameter C
f ree
4 becomes

C
f ree
4 = J(R,τ)BFI2, (A15)

where

J(R,τ) = 2

∫

dν1,2,3dφ1,2,3E1E2E3G(∆ω ,τ), (A16)

with resonance function G(∆ω ,τ) = (1− cos(∆ωτ)/∆ω . Here, τ = δ 2
ωω0t is dimensionless time, and

∆ω = (ν3 −ν1)(ν3 −ν2)−R(φ3 −φ1)(φ3 −φ2). The frequency parameter ν and direction parameter φ
have been made dimensionless by means of the frequency width and the directional width.

For a Gaussian spectrum

E1 =
1

2π
e−

1
2
(ν2

1+φ 2
1 ),

the integral in Eq. (A16) may be solved exactly (see e.g. Fedele (2015)) and the resulting solution for

different values of R as a function of dimensionless time τ has been plotted in Fig. 16. Note that in the

plot the parameter J has been normalized with the factor π/3
√

3 which is the time-asymptotic value of J

for R = 0.
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From the plot it is clear, that, except for the case of uni-directional propagation (i.e. R= 0), the parameter

J and therefore the kurtosis parameter C
f ree
4 has a maximum at the finite time τmax = 1/(3R)1/2 after

which it decays to zero for large times. As an indicator of the severity of the weakly nonlinear sea state

one could use the maximum value of J. In Fig. 17 I have plotted the maximum as function of R. Also

shown is the fit
J

N
=

R0(1−R)

R+R0

, N =
π

3
√

3
, (A17)

with R0 = 7.44
√

3/4π3, and the fit approximates the ’exact’ results reasonably well.
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Figure 17: Maximum value of J versus R. The fit (A17) is shown as well.

A.2 Bound Waves.

The case of bound waves has been extensively discussed by Janssen (2015b). The result for general

spectra will be briefly recorded, and I would also like to record the corresponding results for the case of

a single wave train. It turns out, namely, that, in practice, the narrow-band limit serves as a reasonable

approximation to the case of general spectra, so that these simplified results may be used in the opera-

tional implementation of the pdf of extreme events. The wave train is given by the Stokes wave solution

up to third order in amplitude that is consistent with the narrow-band approximation for the general case

of arbitrary spectra.

The narrow-band limit follows in a straightforward fashion from the complex function Z by using a

wavenumber spectrum with a Dirac delta function, i.e. E(k) = m0δ (k−k0) where m0 is the variance of

the sea surface, and k0 is the peak wave number. In effect, all the interaction coefficients are replaced by

their value at the peak wave number. Writing

A0,0 = 2α ,B0,0 = 2∆,C0,0,0,0 = 4γ , and D0,0,0,0 = 4β , (A18)

the complex function Z becomes

Z = m0D+m
1/2

0 Aeiθ +m0Be2iθ +m
3/2

0 Ce3iθ , (A19)

Technical Memorandum No. 813 29



Shallow-water version of the Freak Wave Warning System

with D = ∆(a2 −〈a2〉), A = a(1+ γε2a),B = αa2,C = βa3, and θ = k0x−ω0t +φ , with ω0 the angular

peak frequency and φ an arbitrary phase. The coefficients α ,β ,γ and ∆ are known functions of peak

wavenumber and depth h and they read

∆ =−k0

4

c2
S

c2
S − v2

g

[

2(1−T 2
0 )

T0

+
1

x

]

+
k2

0κ1

2ω0µ1

δ 2
θ

δ 2
θ +αωδ 2

ω

,

α =
k0

4T 3
0

(

3−T 2
0

)

,β =
3k2

0

64T 6
0

[

8+
(

1−T 2
0

)3
]

, γ =−1

2
α2, (A20)

where x = k0h, T0 = tanhx, c2
S = gh, vg = ∂ω/∂k, and ω0 = (gk0T0)

1/2. The second contribution to the

mean sea level term ∆ is new and is calculated in Appendix B. This additional contribution illustrates

nicely that the narrow-band limit of the mean sea level is not unique as it depends on the order in which

the limit of vanishing width is taken.

I have used the form (A19) to calculate explicitely all the relevant statistical moments following the

method in Janssen (2009, Appendix A.3). Note that in these calculations I have assumed a certain

ordering of the contributions to the surface elevation. Using the significant steepness ε = k0m
1/2

0 , with

typical magnitude in the range 0.01-0.05, one finds that the constant term in (A19) is of order ε2 while

the first, second and third harmonic are of order ε , ε2 and ε3 respectively. Calculations of the statistical

moments have been performed up to lowest significant order, which means that I continue the calculation

up to the first nontrivial contribution of nonlinearity.

As shown in Janssen (2014) the properties of the statistics of the bound waves are different from that of

the free waves. Regarding the skewness it has been shown in Janssen (2015b) that for general spectra the

following result is found:

κ12 =
κ30

3
,κ21 = κ03 = 0, (A21)

where κ30 follows from knowledge of the wave spectrum, i.e.

κ30 =
3

m
3/2

0

∫

dk1,2E1E2 (A1,2 +B1,2) , (A22)

where the coupling coefficients are given in Janssen (2009). As a consequence one finds for the skewness

factor given in Eq. (6),

Cbound
3 =

κ30

3
. (A23)

Note that in the narrow-band limit the skewness term κ30 assumes the simple form

κ30 = 6m
1/2

0 (α +∆) , (A24)

a result which is in agreement with Janssen (2009).

A similar analysis can be performed to obtain a general expression for the envelope kurtosis. This is a

very laborious task, however, and to make sure of the result I have taken the narrow-band limit which

is in perfect agreement with an expression for the envelope kurtosis for a single nonlinear wave train.

Finally, the single mode expression has been validated against numerical simulation of the Stokes wave
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train. Some of the details are given in the Janssen (2015b). For general spectra one finds for the envelope

kurtosis κ4 the result

κ4 =
32

m2
0

∫

dk1,2,3E1E2E3

{

A1,2A2,3 +A1,2B2,3 +
1

2
C1+2−3,1,2,3H1+2−3

+B1,3B3,2 [H3−2H3−1 +H2−3H1−3]} (A25)

where, again, the coupling coefficients are given in Janssen (2009). Then, the bound-wave part of the

kurtosis factor C4 follows from (4), hence,

Cbound
4 = κ4/8. (A26)

For a narrow-band wave train the envelope kurtosis assumes the simple form

κ4 = 64m0

(

γ +α2 +(α +∆)2
)

, (A27)

and exactly the same results for the kurtosis parameters are found when one starts from the single mode

representation (A19) following the method in Janssen (2009).

B Shallow water effects revisited.

B.1 Introduction.

The Benjamin-Feir instability is thought to play a key role in the formation of freak waves, resulting

in a considerable amount of research on the properties of this instability. In this note I would like

to concentrate on the shallow-water effects. Janssen and Onorato (2007) studied the shallow-water case

and found, in agreement with Benjamin (1967), Whitham (1974), Hayes (1973), that for one-dimensional

propagation the Benjamin-Feir instability disappears for kh < 1.363. This property was also shown to

follow from the narrow-band version of the Zakharov equation (Zakharov, 1968) by taking appropriate

limits in order to avoid apparent singularities in the nonlinear transfer coefficients.. Also, the numerical

solution of the Zakharov equation showed that for kh > 1.363 the kurtosis was positive, while in the

opposite case the sign of kurtosis changed, suggesting that there is a direct connection between the B.F.

instability and the generation of freak waves.

In the present version of the ECMWF freak-wave warning system I take the BF instability into account

by using the narrow-band approximation of the Zakharov equation. For example, the nonlinear transfer

function becomes for 1-D propagation

T0,0,0,0/k3
0 =

9T 4
0 −10T 2

0 +9

8T 3
0

− 1

x

{

(2vg − c0/2)2

c2
S − v2

g

+1

}

+Extra. (B1)

where x = k0h, T0 = tanhx, c0 is the phase speed ω0/k0, ω0 = (gk0T0)
1/2, vg is the group velocity

∂ω0/∂k0, and cS is the wave speed in shallow water, c2
S = gh.

Numerically, it can be shown that (B1) vanishes for k0h = 1.363 and that for k0h < 1.363 the nonlinear

transfer coefficient becomes negative suggesting that there is no freak wave formation in that case. How-

ever, this is not correct for 2-D propagation. Taking into account 2-D modulations there is instability

even for k0h < 1.363 as shown by Hayes (1973) and later by Davey and Stewartson (1974). Thus, the

use of (B1) in estimating parameters such as the Benjamin-Feir Index is misleading, hence one needs to
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consider 2-D modulations in shallow water. As explained later, it is not so straightforward to start from

the Zakharov equation because the narrrow-band limit of the nonlinear transfer coefficient is awkward. I

therefore used the Davey-Stewartson equations to find that there is an extra contribution to the nonlinear

transfer function of the form

Extra =
1

4T0

[2c0 + vg(1−T 2
0 )]

2

c2
S − v2

g

δ 2
θ

λ1

µ1
δ 2

k +δ 2
θ

. (B2)

which is always positive, therefore this tends to enhance the nonlinear transfer. Here, δθ and δk are the

relative spectral widths in θ−space and k−space, respectively. Note that the dependence on the width

of spectrum is rather peculiar: the limiting value depends on the order in which the limits of δθ and δk

are taken. Therefore, in the presence of the wave-induced current induced by modulations that have a

transverse wavenumber dependence the narrow-band limit is not unique. This is a problematic feature

when one is interested in the narrow-band limit on the nonlinear transfer coefficient, but this problem

can be resolved by explicitely taking into account the dependence on the modulation wavenumbers in

the along and the cross direction with respect the propagation direction.

0 1 2 3 4 5 6
k_p*h
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T
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Figure 18: Nonlinear transfer coefficient with and without transverse modulations as a function of dimensionless

depth k0h.

As an illustration of the transverse effect I have plotted in Fig. 18 the nonlinear transfer coefficient T0,0,0,0

normalised with the factor k3
0 as a function of dimensionless depth k0h for two cases. The first case has

equal width in frequency and direction, while the second case is for vanishing directional width. The last

case has a vanishing nonlinear transfer for k0h = 1.363 as is indicated by the cross in the figure. It is

clear that directional effects in shallow water play an important role, resulting in modulational instability

far beyond the one-dimensional threshold value of 1.363.
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B.2 Derivation of narrow-band nonlinear transfer coefficient.

My starting point is the Davey-Stewartson equations. There are several forms of this equation available.

I will take the set which is based on the action variable. Introduce the action variable A(k) defined in

such a way that the surface elevation η reads

η =
∫

dk

(

ω

2g

)1/2

(A(k)+A∗(−k))exp(ik ·x) . (B3)

For a single mode A(k) = Aδ (k− k0), assuming without loss of generality that the carrier wave with

wavenumber k0 propagates in the x-direction, one then finds

η =

(

ω0

2g

)1/2
(

Aeik0x +A∗e−ik0x
)

. (B4)

The Davey-Stewartson equations for the envelope A and wave-induced current Q, caused by transverse

modulations, then become

i
∂A

∂τ
+λ

∂ 2A

∂x2
+µ

∂ 2A

∂y2
= ν |A|2A+ν1QA

λ1
∂ 2Q

∂x2
+µ1

∂ 2Q

∂y2
= κ1

∂ 2|A|2
∂y2

(B5)

where

λ =
1

2
ω ′′(k0), µ = vg/2k0, c0 = ω0/k0,

ν = k3
0

[

9T 4
0 −10T 2

0 +9

8T 3
0

− 1

x

{

(2vg − c0/2)2

c2
S − v2

g

+1

}]

,

ν1 =
k4

0

2ω0vg

{

2c0 + vg(1−T 2
0 )
}

, λ1 = c2
S − v2

g, µ1 = c2
S,

κ1 =
1

2

c0

T0

c2
Svg

2c0 + vg(1−T 2
0 )

c2
S − v2

g

. (B6)

The basic solution of Eq. (B5) is the uniform Stokes solution

A = a0e[−i(νa2
0+ν1Q0)τ], Q = Q0 = constant, (B7)

and to test the stability of this traveling wave one introduces modulations according to

A = a0{1+ εa(x, t)}e[−i(νa2
0+ν1Q0)τ],

Q = Q0(1+ εq(x, t)) (B8)

with a = a+E +a−E−1, q = q+E +q−e−1, where E = exp i(lx+my−Ωτ).

Technical Memorandum No. 813 33



Shallow-water version of the Freak Wave Warning System

Linearizing Eqns. (B5) while using the form (B8) the resulting dispersion relation for Ω as function of

wavenumber l and m becomes

Ω2 =
(

λ l2 +µm2
)[

2ν̃a2
0 +(λ l2 +µm2)

]

(B9)

where

ν̃ = ν +ν1κ1m2/(λ1l2 +µ1m2).

From (B9) Hayes (1973) and Davey and Stewartson (1974) showed that the wave train is unstable if

ν̃(λ l2 +µm2)< 0. (B10)

Note that λ is always negative, µ is positive and ν changes from negative to positive as k0h increase

beyond k0h = 1.363 (Hasimoto and Ono, 1972).

Hayes (1973) has shown that it is always possible to choose l and m in such a way that the instability

criterion (B10) is satisfied, but instability is practically non-existent for shallow water waves in the range

0 ≤ k0h ≤ 0.5.

The severity of the sea state is usually estimated by means of the Benjamin-Feir Index which measures

the balance of nonlinearity and dispersion. Here, the measure of importance of nonlinearity is given by

the coefficient ν̃ in the dispersion relation (B9),

ν̃ = ν +ν1κ1m2/(λ1l2 +µ1m2).

Note that in the one-dimensional shallow water case one finds ν̃ = ν as m then vanishes. This is the

expression that has been used so far in the ECMWF freak wave warning system. The 2-D effect is

entirely caused by the term ν1κ1m2/(λ1l2 + µ1m2). Clearly, the narrow-band limit of this term is not

unique as it depends on the order in which the limits l → 0 and m → 0 are taken. Therefore, in this extra

contribution spectral width needs to be taken into account explicitely.

In the next step we need to estimate the size of the modulation wavenumbers l and m. I will do this in

terms of the frequency and directional width σω and σθ . Writing the original wave numbers kx and ky in

terms of the polar coordinates k and θ the modulation wave numbers l and m become

l = kx − k0 = k cosθ − k0, m = ky = k sinθ ,

and expanding around the values k = k0 and θ = 0 one finds in lowest order

δ l = δk, δm = k0δθ ,

therefore

〈δ l2〉1/2 = σk, 〈δm2〉1/2 = k0δθ .

Finally, introducing the relative frequency width δω using the relation δω = σω/ω0 = vg/c0 ×σk/k0 the

extra term E becomes

E =
κ1ν1

µ1

δ 2
θ

δ 2
θ +αωδ 2

ω

with αω = λ1c2
0/µ1v2

g. This parametrization of the effects of 2D modulations has the desirable property

that for a narrow directional distribution with δθ → 0 the extra contribution vanishes. The front factor
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κ1ν1/µ1 and the factor αω can be written more explicitely using the expressions for κ1, ν1, µ1 and λ1.

Then αω becomes

αω =
c2

0

v2
g

(

1−
v2

g

c2
S

)

(B11)

and the extra term becomes explicitely

E =
k3

0

4T0

[

2c0 + vg(1−T 2
0 )
]2

c2
S − v2

g

δ 2
θ

δ 2
θ +αωδ 2

ω

(B12)

In principle, the extra term depends on the ratio δθ/δω which can be eliminated in favour of the ratio R

defined in (A14).

Note that the additional contribution to the nonlinear transfer coefficient is associated with a finite value

of the wave-induced current caused by the two-dimensional modulations, hence a finite value of Q. In

terms of the amplitude a of the surface elevation (here action variable A = (g/2ω0)
1/2a) the above result

implies that

Q =
κ1g

2ω0µ1

δ 2
θ

δ 2
θ +αωδ 2

ω

|a|2 (B13)

and the additional contribution to the wave-induced current is given by k2Q/vg (see Eq. (B19)). This will

give rise to an additional contribution to the mean sea level. Using Eq. (2.13c) of Davey and Stewartson

(1974) one then finds for the mean sea level η20 the explicit expression

η20 =− k0c2
S

4(c2
S − v2

g)

(

2(1−T 2
0 )

T0

+
1

x

)

|a|2 + k2
0κ1

2ω0µ1

δ 2
θ

δ 2
θ +αωδ 2

ω

|a|2 (B14)

Clearly, also the narrow-band limit of the mean sea level is not unique and therefore one has to take

explicit account of the spectral widths.

In order to illustrate the importance of the wave-induced mean sea level caused by the directional width

of the wave spectrum I have compared in Fig. 19 mean sea levels with (black circles) and without

(red circles) the two-dimensional contribution against exact computations of the wave-induced sea level.

These exact computations do not include the two-dimensional contribution as the interaction coefficients

have been determined by taking the limit for a one-dimensional wave spectrum. Therefore, the model

calculations without the transverse effect are in good agreement with the exact result. It is clear, however,

that the transverse contribution reduces the size of the wave-induced mean sea level.

Recently, there has been a considerable in interest in the role of the wave-induced mean sea level in the

severity of the sea state of the Draupner case. In the one-dimensional case there is a set down due to the

presence of the weakly nonlinear waves and in practice this will give rise to reduced levels of skewness

and kurtosis (see (A24) and (A27)). However, as is also evident from Eq. (B14), two-dimensional effects

may reduce the size of the set down and may, in principle, even give rise to a wave-induced set up.

Using the simulated spectra from the WAM model for the Draupner case, the exact computations always

give rise to a set down, however, as is evident from Fig. (19). In order to explore the possibility of a

wave-induced set up further, I have plotted in Fig 20 the dimensionless mean sea level 〈η20〉/(2εm
1/2

0 )
as function of dimensionless depth for three values of the ratio δθ/δω , namely 0, 1 and ∞. Although for

broader directional spectra the wave-induced mean sea level almost vanishes, there is hardly no indication

of a wave-induced set up.
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Figure 19: Comparison of wave-induced mean sea level with (black circles) and without transverse effect (red

circles) against exact computations for the Draupner case, showing that the transverse effect is relevant. The blue

line is the line of perfect agreement.

B.3 Rederive Davey-Stewartson Equations.

While trying to derive the effect of 2-D modulations on the nonlinear transfer function from the Davey-

Stewartson equations, it was realized that one of its coefficients was not dimensionally correct, namely

ν1. Furthermore, checking the derivation by the authors a magical factor (2.23) was introduced without

mentioning the physical interpretation of the factor Q. Let us redo a bit of their derivation, my version of

it will give a dimensionally correct coefficient ν1, while it is quite clear that Q turns out to be connected

with the extra flow induced by the 2-dimensional modulation. In order to understand this section the

availability of Davey and Stewartson (1974) will be essential, while it is emphasized that the original

D&S equatuations are for the envelope amplitude of the potential and not of the action variable.

Let us start from their Equations (2.14) and (2.15). They read, with φ01 the amplitude of the mean flow

potential,

(c2
S − v2

g)
∂ 2φ01

∂ξ 2
+ c2

S

∂ 2φ01

∂η2
=−k2

{

2c0 + vg(1−T 2
0 )
} ∂ |A|2

∂ξ
(B15)

while, with A the amplitude of the potential oscillation,

2iω
∂A

∂τ
−
{

v2
g − c2

S(1−T 2
0 )(1− khT0)

} ∂ 2A

∂ξ 2
+ c0vg

∂ 2A

∂η2
=

1

2
k4
{

T−2
0 −12+13T 2

0 −2T 4
0

}

|A|2A+ k2
{

2c0 + vg(1−T 2
0 )
}

A
∂φ01

∂ξ
. (B16)

Here, τ = ε2t,ξ = ε(x− vgt),η = εy, and ε is assumed to be small.

36 Technical Memorandum No. 813



Shallow-water version of the Freak Wave Warning System

0 1 2 3 4 5
k_0*h

-4

-3

-2

-1

0

<η
_{2

0}>

Figure 20: Comparison of wave-induced mean sea level 〈η20〉/(2εm
1/2

0 ) as function of dimensionless depth koh

for different values of the ratio δθ/δω , namely 0 (black line), 1 (red line) and ∞ (green line).

The 1-D problem.

Consider the 1-D problem first, so disregard derivatives with respect to η . The equation for the mean

potential φ01 may then be integrated once to obtain

∂φ01

∂ξ
=−k2/λ1

{

2c0 + vg(1−T 2
0 )
}

|A|2 (B17)

where λ1 = c2
S − v2

g. Then, substitute (B17) in (B16) to obtain

i
∂A

∂τ
+λ

∂ 2A

∂ξ 2
= ν |A|2A (B18)

with

ν = 2
k4T0

ω

[

9−10T 2
0 +9T 4

0

8T 3
0

− 1

x

{

(2vg − c0/2)2

c2
S − v2

g

+1

}]

. (B19)

Note that after some extensive algebra the second term in Davey and Stewartson (1974) may be written

in the form given in (B19) which agrees with the results from Whitham (1974).

The 2-D problem.

Eq. (B17) gives the ’equilibrium’ flow for a 1-dimensional modulation. Clearly, in 2-D there will be an

additional contribution to the flow. Thus we introduce the factor Q according to

∂φ01

∂ξ
= k2Q/vg − k2/λ1

{

2c0 + vg(1−T 2
0 )
}

|A|2 (B20)
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where the last term corresponds to the right-hand side of (B17). Now substitute (B20) in (B15) to obtain

an equation for transverse contribution to the flow, Q,

λ1

∂ 2Q

∂ξ 2
+ c2

S

∂ 2Q

∂η2
= κ1

∂ 2|A|2
∂η2

(B21)

where λ1 = c2
S − v2

g while

κ1 =
vgc2

S

c2
S − v2

g

{

2c0 + vg

(

1−T 2
0

)}

(B22)

which agrees with Davey and Stewartson (1974) (Note that c2
S = gh).

Finally, substituting (B20) in (B16) gives

i
∂A

∂τ
+λ

∂ 2A

∂ξ 2
+µ

∂ 2A

∂η2
= ν |A|2A+ν1QA, (B23)

where λ = ω ′′
0 /2,µ = vg/2k, ν is given in Eq. (B19) and, finally,

ν1 =
k4

2ωvg

{

2c0 + vg

(

1−T 2
0

)}

(B24)

which has, compared to Davey and Stewartson (1974), an additional factor of 1/2ω .
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