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LATE REQUEST FOR A SPECIAL PROJECT 2022–2024

MEMBER STATE: United Kingdom

Principal Investigator1: Raghul Parthipan

Affiliation: University of Cambridge

Address: Department of Computer Science and Technology
15 JJ Thomson Avenue
Cambridge CB3 0FD
UK

Other researchers: Dr H.M. Christensen
Dr M. Chantry
Dr D.J.Wischik
Dr J.S.Hosking

Project Title: Probabilistic Machine Learning models for stochastic cloud 
parameterisation schemes: development and coupled evaluation 
within the IFS

If this is a continuation of an existing project, please state 
the computer project account assigned previously. SP ___________________

Starting year: 
(A project can have a duration of up to 3 years, agreed at the beginning of the
project.)

2022

Would you accept support for 1 year only, if necessary? YES  NO 

Computer resources required for the years:
(To make changes to an existing project please submit an amended 
version of the original form.)

2022 2023 2024

High Performance Computing Facility (SBU) 100,000 10,200,000 -

Accumulated data storage (total archive 
volume)2 (GB) 380 16,000 -

Continue overleaf

1 The Principal Investigator will act as contact person for this Special Project and, in particular, will be asked to register 
the project, provide an annual progress report of the project’s activities, etc.
2 If e.g. you archive x GB in year one and y GB in year two and don’t delete anything you need to request x + y GB for 
the second project year.
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within the IFS

Extended abstract

The  completed  form  should  be  submitted/uploaded  at  https://www.ecmwf.int/en/research/special-projects/special-
project-application/special-project-request-submission. 

All Special Project requests should provide an abstract/project description including a scientific plan, a justification of
the computer resources requested and the technical characteristics of the code to be used.

Requests asking for 3,000,000 SBUs or more should be more detailed (3-5 pages).

Following submission by the relevant Member State the Special Project requests the evaluation will be  based on the
following criteria: Relevance to ECMWF’s objectives, scientific and technical quality,and justification of the resources
requested.  Previous Special  Project  reports and the use of  ECMWF software and data infrastructure will  also be
considered in the evaluation process.

All accepted project requests will be published on the ECMWF website.

Introduction

Stochastic Parameterisations

A major  source of inaccuracies  in  climate  models is  due to the parameterisation of unresolved
processes. Introducing stochasticity has had benefits including better ensemble forecasts (Buizza et
al., 1999; Leutbecher et al., 2017; Palmer, 2012), and improvements to model mean state (Berner et
al., 2012) and climate variability (Christensen et al., 2017). The motivation for using stochasticity
comes from the understanding that the effects of the unresolved (sub-grid) processes cannot be
effectively  predicted  as  a  deterministic  function  of  the  resolved  ones  due  to  a  lack  of  scale
separation between them. Adding randomness allows us to capture  our  uncertainty  about  those
aspects of the unresolved processes which may affect the resolved outcomes. Using correlated noise
(such as red noise) is important for modelling temporal correlations, and is used in the stochastically
perturbed parameterisation tendencies  (SPPT) scheme (Buizza et  al.,  1999; Palmer et  al.,  2009)
amongst other examples. 

Machine Learning for Parameterisation

The machine learning (ML) approach is  to learn parameterisation functions  from data.  Various
researchers have proposed ML methods for learning deterministic models (Brenowitz & Bretherton,
2018, 2019; Gentine et al., 2018; Krasnopolsky et al., 2013; O’Gorman & Dwyer, 2018; Rasp et al.,
2018; Yuval & O’Gorman, 2020; Yuval et al., 2021).  Deterministic models with learnt temporal
correlations  were  proposed  by  Chattopadhyay,  Hassanzadeh,  &  Subramanian  (2020),
Chattopadhyay, Subel,  & Hassanzadeh (2020) and Vlachas et  al.  (2018), but these were costly.
Gagne et al. (2020) were the first to use a probabilistic approach to learn parameterisations, whilst
also including red noise to capture temporal trends.

There  are  noted  issues  pertaining  to  model  instability  when ML parameterisations  are  coupled
within existing weather and climate models. Good results from testing in an ‘offline’ capacity do
not guarantee good results in a coupled setting. Also, results obtained from studying simpler models
such as the Lorenz 96 (Lorenz, 1996), whilst an important step in crafting better parameterisation
models, may not hold when these approaches are used on full-scale models such as the IFS. It is
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therefore essential to ultimately test these ML approaches in a coupled system, such as done by
Chantry et al. (2021) in the IFS.

Our Prior Work

In our work preceding this,  we combined the benefits  of stochasticity  and machine  learning to
create a parameterisation scheme for the Lorenz 96 atmospheric simulation which was competitive
and often superior to both a bespoke baseline and an existing probabilistic machine-learning one
(GAN). Our model (Parthipan et  al.,  2022) was a physically-informed recurrent neural network
deployed within a probabilistic framework, and its good performance was likely due to a superior
ability to model temporal correlations compared to existing approaches. 

Coupled testing has only been carried out in the Lorenz 96 model.  Further model crafting and
evaluation is required following coupling to the IFS.

Objectives

The goal is to develop stochastic machine learning models for the cloud parameterisation scheme in
the IFS. We start by modelling the cloud fraction. The training data comprises high-resolution data
from IFS runs at TCo1280 which are coarse-grained to the TL159 resolution. Coupled IFS runs at
TL159 will  be  used to assess model  stability  and diagnose errors.  After the models have been
developed, we will evaluate their performance from longer runs at TL159. Success may lead to
future work creating models for operational resolutions. 

Proposed Integrations

All runs will be at the T159 resolution.

Runs for Model Development

We would run short forecasts (0-10 days) for dates within the training/validation regime, multiple
times during the debugging stage. This will allow us to diagnose any issues that may arise when
including our ML model within the IFS. 

Evaluation: Medium Range Forecasting

This  involves  running 10-day forecasts  starting  every 5 days  between July to  December  2021.
Given our  models  are  stochastic,  a  50-member  ensemble  forecast  is  run  for  each  start  date  to
represent the uncertainty. 

Evaluation: Year-Long Simulations

1 year-long simulations would be run to assess long-range forecasting. These would start in 2021,
and be repeated five times to give uncertainty over the climate distribution. 
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Technical Requirements

The estimate of resources is based on simulations carried out at TL159 on the Cray system, where a
10 day TL159 coupled atmosphere-ocean forecast costs 1800 SBUs and each 2D field is about 70
KB in size. These numbers are used to estimate the SBUs and storage space required below. This is
expected to be similar for the new Atos system. 

In the first  year,  we would plan to do most of the model development  and debugging. This is
estimated to cost 126,000 SBU (7 days/forecast  run * 50 different runs * 2 models [as not all
models will be run each time] * 180 SBU/day). Allowing for a 10% increase due to the cost of the
ML model brings this to 140,000 SBUs. Allowing for a buffer gives 200,000 SBU. Only a subset of
the total output created will need to be stored, estimated at 372 GB (0.5 year of output * 744 GB per
year when saving hourly). 

In the second year we expect to carry out the bulk of the evaluation experiments. Our medium range
forecasts are expected to cost 8.1 million SBUs (10 days/forecast * 30 different starting dates * 3
models to compare * 50 ensemble members * 180 SBU for 1 day). Allowing for a 10% increase due
to the cost of the ML model itself brings this to 9 million SBUs. Output will be saved 6-hourly,
requiring 15,376 GB (124 years of output * 124 GB per year when saving 6 hourly).

The year-long experiments would cost 1 million SBUs (1 year/forecast * 3 models to compare * 5
ensemble members * 65700 SBU for a year). Allowing for a 10% increase due to the cost of the ML
model itself, this brings this to 1.1 million SBUs. Output will be saved daily, requiring 470 GB (15
years of output *  31 GB per year when saving daily). 

In all cases, a small buffer is included.

Acknowledgements

Thanks to Paul Dando for his help with estimating the number of SBUs for the TL159 forecasts, as
well as the output sizes. 
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